Medine.co.uk

Carace 20 Plus

Informations for option: Carace 20 Plus, show other option

SUMMARY OF PRODUCT CHARACTERISTICS

1    NAME OF THE MEDICINAL PRODUCT

Carace 20 Plus

2    QUALITATIVE AND QUANTITATIVE COMPOSITION

Each tablet contains 20 mg lisinopril and 12.5 mg hydrochlorothiazide.

3    PHARMACEUTICAL FORM

Tablets

Carace 20 Plus: Yellow, hexagonal scored tablet with the product code ‘MSD 140’ on one side.

4    CLINICAL PARTICULARS

4.1    Therapeutic indications

For the management of mild to moderate hypertension in patients who have been stabilised on the individual components given in the same proportions.

4.2    Posology and method of administration

Route of administration: Oral

Adults

Essential hypertension: The usual dosage of Carace 10 Plus is 1 tablet, administered once daily. If necessary, the dosage may be increased to 2 tablets, administered once daily.

Dosage in renal insufficiency: Thiazides may not be appropriate diuretics for use in patients with renal impairment and are ineffective at

creatinine clearance values of 30 ml/min or below (i.e. moderate or severe renal insufficiency).

Carace 10 Plus is not to be used as initial therapy in any patient with renal insufficiency.

In patients with creatinine clearance of >30 and <80 ml/min, Carace 10 Plus may be used, but only after titration of the individual components.

Prior diuretic therapy:

Symptomatic hypotension may occur following the initial dose of Carace 10 Plus: this is more likely in patients who are volume and/or salt depleted as a result of prior diuretic therapy. If possible, the diuretic therapy should be discontinued for 2-3 days prior to initiation of therapy with lisinopril alone, in a 2.5 mg dose.

Use in the elderly

Lisinopril was equally effective in elderly (65 years or older) and nonelderly hypertensive patients. In elderly hypertensive patients, monotherapy with lisinopril was as effective in reducing diastolic blood pressure as monotherapy with either hydrochlorothiazide or atenolol. In clinical studies, age did not affect the tolerability of lisinopril.

In clinical studies the efficacy and tolerability of lisinopril and hydrochlorothiazide, administered concomitantly, were similar in both elderly and younger hypertensive patients.

Paediatric Use

Safety and effectiveness in children have not been established.

4.3    Contraindications

•    Hypersensitivity to lisinopril, to any of the excipients or any other angiotensin converting enzyme (ACE) inhibitor

•    Hypersensitivity to hydrochlorothiazide or other sulphonamide-derived drugs

•    History of angioedema with previous ACE inhibitor therapy

•    Hereditary or idiopathic angioedema

•    Second and third trimesters of pregnancy (see sections 4.4 and 4.6)

•    Severe renal impairment (creatinine clearance < 30ml/min)

•    Anuria, aortic stenosis or hyperkalaemia

•    Severe hepatic impairment

•    The concomitant use of Carace Plus with aliskiren-containing products is contraindicated in patients with diabetes mellitus or renal impairment (GFR < 60 ml/min/1.73 m2) (see sections 4.5 and 5.1).

4.4    Special warnings and precautions for use

Symptomatic hypotension

Symptomatic hypotension is rarely seen in uncomplicated hypertensive patients, but is more likely to occur if the patient has been volume-depleted, e.g. by diuretic therapy, dietary salt restriction, dialysis, diarrhoea or vomiting, or has severe renin-dependent hypertension (see sections 4.5 and 4.8). Regular determination of serum electrolytes should be performed at appropriate intervals in such patients. In patients at increased risk of symptomatic hypotension, initiation of therapy and dose adjustment should be monitored under close medical supervision. Particular consideration applies to patients with ischaemic heart or cerebrovascular disease, because an excessive fall in blood pressure could result in a myocardial infarction or cerebrovascular accident.

If hypotension occurs, the patient should be placed in the supine position and, if necessary, should receive an intravenous infusion of normal saline. A transient hypotensive response is not a contraindication for further doses. Following restoration of effective blood volume and pressure, reinstitution of therapy at reduced dosage may be possible; or either of the components may be used appropriately alone.

In some patients with heart failure who have normal or low blood pressure, additional lowering of systemic blood pressure may occur with lisinopril. This effect is anticipated and is not usually a reason to discontinue treatment. If hypotension becomes symptomatic, a reduction of dose or discontinuation of lisinopril-hydrochlorothiazide may be necessary.

Aortic and mitral valve stenosis / hypertrophic cardiomyopathy

As with other ACE inhibitors, lisinopril should be given with caution to patients with mitral valve stenosis and obstruction in the outflow of the left ventricle such as aortic stenosis or hypertrophic cardiomyopathy.

Renal function impairment

Thiazides may not be appropriate diuretics for use in patients with renal impairment and are ineffective at creatinine clearance values of 30 ml/min or below (corresponds to moderate or severe renal insufficiency).

Lisinopril-hydrochlorothiazide should not be administered to patients with renal insufficiency (creatinine clearance less than or equal to 80 ml/min) until titration of the individual components has shown the need for the doses present in the combination tablet.

In patients with heart failure, hypotension following the initiation of therapy with ACE inhibitors may lead to some further impairment in renal function. Acute renal failure, usually reversible, has been reported in this situation.

In some patients with bilateral renal artery stenosis or stenosis of the artery to a solitary kidney, who have been treated with angiotensin converting enzyme inhibitors, increases in blood urea and serum creatinine, usually reversible upon discontinuation of therapy, have been seen. This is especially likely in patients with renal insufficiency. If renovascular hypertension is also present there is an increased risk of severe hypotension and renal insufficiency. In these patients, treatment should be started under close medical supervision with low doses and careful dose titration. Since treatment with diuretics may be a contributory factor to the above, renal function should be monitored during the first few weeks of lisinopril-hydrochlorothiazide therapy.

Some hypertensive patients with no apparent pre-existing renal disease have developed usually minor and transient increases in blood urea and serum creatinine when lisinopril has been given concomitantly with a diuretic. This is more likely to occur in patients with pre-existing renal impairment. Dosage reduction and/or discontinuation of the diuretic and/or lisinopril may be required.

Prior diuretic therapy

The diuretic therapy should be discontinued for 2-3 days prior to initiation with lisinopril-hydrochlorothiazide. If this is not possible, treatment should be started with lisinopril alone, in a 5 mg dose.

Renal transplantation

Should not be used, since there is no experience with patients recently transplanted with a kidney.

Anaphylactoid reactions in haemodialytic patients

The use of lisinopril-hydrochlorothiazide is not indicated in patients requiring dialysis for renal failure. Anaphylactoid reactions have been reported in patients, undergoing certain haemodialysis procedures (e.g. with the high-flux membranes AN 69 and during low-density lipoproteins (LDL) apheresis with dextran sulfate) and treated concomitantly with an ACE inhibitor. In these patients consideration should be given to using a different type of dialysis membrane or a different class of antihypertensive agent.

Anaphylactoid reactions related to low-density lipoproteins (LDL) apheresis

In rare occasions, patients treated with ACE inhibitors during low-density lipoprotein (LDL) apheresis with dextran sulfate have shown life threatening anaphylactic reactions. These symptoms could be avoided by temporary discontinuation of the treatment with ACE inhibitors before each apheresis.

Hepatic disease

Thiazides should be used with caution in patients with impaired hepatic function or progressive liver disease, since minor alterations of fluid and electrolyte balance may precipitate hepatic coma (see section 4.3). Rarely, ACE inhibitors have been associated with a syndrome that starts with cholestatic jaundice or hepatitis and progresses to fulminant necrosis and (sometimes) death. The mechanism of this syndrome is not understood. Patients receiving lisinopril-hydrochlorothiazide who develop jaundice or marked elevations of hepatic enzymes should discontinue lisinopril-hydrochlorothiazide and receive appropriate medical follow-up.

Surgery/anaesthesia

In patients undergoing major surgery or during anaesthesia with agents that produce hypotension, lisinopril may block angiotensin II formation secondary to compensatory renin release. If hypotension occurs and is considered to be due to this mechanism, it can be corrected by volume expansion.

Metabolic and endocrine effects

In diabetic patients treated with oral antidiabetic agents or insulin, glycaemia levels should be closely monitored during the first month of treatment with an ACE inhibitor. Thiazide therapy may impair glucose tolerance. Dosage adjustment of antidiabetic agents, including insulin, may be required.

Increases in cholesterol and triglyceride levels may be associated with thiazide diuretic therapy. Thiazide therapy may precipitate hyperuricaemia and/or gout in certain patients. However, lisinopril may increase urinary uric acid and thus may attenuate the hyperuricaemic effect of hydrochlorothiazide.

Electrolyte imbalance

As for any patient receiving diuretic therapy, periodic determination of serum electrolytes should be performed at appropriate intervals.

Thiazides, including hydrochlorothiazide, can cause fluid or electrolyte imbalance (hypokalaemia, hyponatraemia, and hypochloremic alkalosis). Warning signs of fluid or electrolyte imbalance are dryness of mouth, thirst, weakness, lethargy, drowsiness, muscle pain or cramps, muscular fatigue, hypotension, oliguria, tachycardia, and gastrointestinal disturbances such as nausea or vomiting. Dilutional hyponatraemia may occur in oedematous patients in hot weather. Chloride deficit is generally mild and does not require treatment. Thiazides have been shown to increase the urinary excretions of magnesium, which may result in hypomagnesaemia.

Thiazides may decrease urinary calcium excretion and may cause intermittent and slight elevation of serum calcium. Marked hypercalcaemia may be evidence of hidden hyperparathyroidism. Thiazides should be discontinued before carrying out tests for parathyroid function.

Hyperkalaemia

Elevations in serum potassium have been observed in some patients treated with ACE inhibitors, including lisinopril. Patients at risk for the development of hyperkalaemia include those with renal insufficiency, diabetes mellitus, or those using concomitant potassium-sparing diuretics, potassium supplements or potassium-containing salt substitutes, or those patients taking other drugs associated with increases in serum potassium (e.g. heparin). If concomitant use of the above-mentioned agents is deemed appropriate, regular monitoring of serum potassium is recommended (see section 4.5).

Diabetic patients

In diabetic patients treated with oral antidiabetic agents or insulin, glycaemic control should be closely monitored during the first month of treatment with an ACE inhibitor (see section 4.5).

Dual blockade of the renin-angiotensin-aldosterone system (RAAS)

There is evidence that the concomitant use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren increases the risk of hypotension, hyperkalaemia and decreased renal function (including acute renal failure). Dual blockade of RAAS through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is therefore not recommended (see sections 4.5 and 5.1).

If dual blockade therapy is considered absolutely necessary, this should only occur under specialist supervision and subject to frequent close monitoring of renal function, electrolytes and blood pressure.

ACE-inhibitors and angiotensin II receptor blockers should not be used concomitantly in patients with diabetic nephropathy.

Hypersensitivity / angioedema

Angioedema of the face, extremities, lips, tongue, glottis and/or larynx has been reported uncommonly in patients treated with angiotensin converting enzyme inhibitors, including lisinopril. This may occur at any time during therapy. In such cases, lisinopril should be discontinued promptly and appropriate treatment and monitoring should be instituted to ensure complete resolution of symptoms prior to dismissing the patient. Even in those instances where swelling of only the tongue is involved, without respiratory distress, patients may require prolonged observation since treatment with anti-histamines and corticosteroids may not be sufficient.

Very rarely, fatalities have been reported due to angioedema associated with laryngeal oedema or tongue oedema. Patients with involvement of the tongue, glottis or larynx, are likely to experience airway obstruction, especially those with a history of airway surgery. In such cases emergency therapy should be administered promptly. This may include the administration of adrenaline and/or the maintenance of a patent airway. The patient should be under close medical supervision until complete and sustained resolution of symptoms has occurred.

Intestinal angioedema has also been reported very rarely in patients treated with ACE inhibitors and should be included in the differential diagnosis of patients on ACE inhibitors presenting with abdominal pain.

Angiotensin converting enzyme inhibitors cause a higher rate of angioedema in black patients than in non-black patients.

Patients with a history of angioedema unrelated to ACE inhibitor therapy may be at increased risk of angioedema while receiving an ACE inhibitor (see section 4.3).

Patients receiving coadministration of ACE inhibitor and mTOR (mammalian target of rapamycin) inhibitor (e.g., temsirolimus, sirolimus, everolimus) therapy may be at increased risk for angioedema.

In patients receiving thiazides, hypersensitivity reactions may occur with or without a history of allergy or bronchial asthma. Exacerbation or activation of systemic lupus erythematosus has been reported with the use of thiazides.

Desensitisation

Patients receiving ACE inhibitors during desensitisation treatment (e.g. hymenoptera venom) have sustained anaphylactoid reactions. In the same patients, these reactions have been avoided when ACE inhibitors were temporarily withheld but they reappeared upon inadvertent rechallenge.

Neutropenia / Agranulocytosis

Neutropenia/agranulocytosis, thrombocytopenia and anaemia have been reported for patients receiving ACE inhibitors. In patients with normal renal function and no other complicating factors neutropenia occurs rarely. Neutropenia and agranulocytosis are reversible after discontinuation of the ACE inhibitor. Lisinopril should be used with extreme caution in patients with collagen vascular disease, immunosuppressant therapy, treatment with alopurinol or procainamide, or a combination of these complicating factors, especially if there is pre-existing impaired renal function. Some of these patients developed serious infections, which in a few instances did not respond to intensive antibiotic therapy. If lisinopril is used in such patients, periodic monitoring of white blood cell counts is advised and patients should be instructed to report any sign of infection.

Race

Angiotensin converting enzyme inhibitors cause a higher rate of angioedema in black patients than in non-black patients.

As with other ACE inhibitors, lisinopril may be less effective in lowering blood pressure in black patients than in non-black patients, possibly because of a higher prevalence of low-renin states in the black hypertensive population.

Cough

Cough has been reported with the use of ACE inhibitors. Characteristically, the cough is non-productive, persistent and resolves after discontinuation of therapy. ACE inhibitor-induced cough should be considered as part of the differential diagnosis of cough.

Lithium

The combination of ACE-inhibitors and lithium is generally not recommended (see section 4.5).

Anti-doping test

The hydrochlorothiazide contained in this medication could produce a positive analytic result in an anti-doping test.

Pregnancy

ACE inhibitors should not be initiated during pregnancy. Unless continued ACE inhibitor therapy is considered essential, patients planning pregnancy should be changed to alternative anti-hypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with ACE inhibitors should be stopped immediately, and, if appropriate, alternative therapy should be started (see sections 4.3 and 4.6).

4.5 Interaction with other medicinal products and other forms of interaction

Lithium

Reversible increases in serum lithium concentrations and toxicity have been reported during concomitant administration of lithium with ACE inhibitors. Diuretic agents and ACE inhibitors reduce the renal clearance of lithium and pose a high risk of lithium toxicity. The combination of lisinopril and hydrochlorothiazide with lithium is therefore not recommended and careful monitoring of serum lithium levels should be performed if the combination proves necessary (see section 4.4).

Potassium supplements, potassium-sparing diuretics or potassium-containing salt substitutes

The potassium losing effect of thiazide diuretics is usually attenuated by the potassium conserving effect of lisinopril. The use of potassium supplements, potassium-sparing agents or potassium-containing salt substitutes, particularly in patients with impaired renal function or diabetes mellitus, may lead to a significant increase in serum potassium. If concomitant use of lisinopril-hydrochlorothiazide and any of these agents is required, they should be used with caution and with frequent monitoring of serum potassium (see section 4.4).

Torsades de pointes-inducing medicinal products

Because of the risk of hypokalaemia the concomitant administration of hydrochlorothiazide and medicinal products that induce torsades de pointes, e.g. some antiarrhythmias, some anti-psychotics and other drugs known to induce torsades de pointes, should be used with caution.

Tricyclic antidepressants / antipsychotics / anaesthetics

Concomitant use of certain anaesthetic medicinal products, tricyclic antidepressants and antipsychotics with ACE inhibitors may result in further lowering of blood pressure (see section 4.4).

Non steroidal anti-inflammatory drugs (NSAIDs) including acetylsalicylic acid

Chronic administration of NSAIDs (including selective cyclooxygenase-2 inhibitors) may reduce the antihypertensive effect of an ACE inhibitor. NSAIDs and ACE inhibitors may exert an additive effect on the deterioration of renal function. These effects are usually reversible. Rarely, acute renal failure may occur, especially in patients with compromised renal function such as the elderly or dehydrated.

Gold

Nitritoid reactions (symptoms of vasodilatation including flushing, nausea, dizziness and hypotension, which can be very severe) following injectable gold (for example, sodium aurothiomalate) have been reported more frequently in patients receiving ACE inhibitor therapy.

Sympathomimetics

Sympathomimetics can reduce the antihypertensive effect of ACE inhibitors. Other antihypertensives

Concomitant use of these agents may increase the hypotensive effect of lisinopril-hydrochlorothiazide. Concomitant use of glyceryl trinitrate and other nitrates or other vasodilators may further reduce the blood pressure.

Antidiabetics

Epidemiological studies indicate that concomitant administration of ACE inhibitors and antidiabetic medicinal products (insulins, oral hypoglycaemic agents) may cause an increased blood glucose lowering effect with risk of hypoglycaemia. This phenomenon appeared to be more likely to occur during the first weeks of combination treatment and in patients with renal impairment. Long term controlled clinical trials with lisinopril have not confirmed these findings and do not preclude the use of lisinopril in diabetic patients. It is advised, however that these patients be monitored. (See below for information regarding antidiabetic drugs and thiazide diuretics).

Dual Blockade of the renin-angiotensin-aldosterone system

Clinical trial data have shown that dual blockade of the renin-angiotensin-aldosterone-system (RAAS) through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is associated with a higher frequency of adverse events such as hypotension, hyperkalaemia and decreased renal function (including acute renal failure) compared to the use of a single RAAS-acting agent (see sections 4.3, 4.4 and 5.1).

Amphotericin B (parenteral), carbenoxolone, corticosteroids, corticotropin (ACTH) or stimulant laxatives

Hydrochlorothiazide may intensify electrolyte imbalance, particularly hypokalaemia.

Calcium salts

Increased serum calcium levels due to decreased excretion may occur when administered concurrently with thiazide diuretics.

Cardiac glycosides

There is increased risk of digitalis toxicity associated with thiazide induced hypokalaemia.

Colestyramine and colestipol

These may delay or reduce absorption of hydrochlorothiazide. Therefore sulphonamide diuretics should be taken at least 1 hour before or 4-6 hours after intake of these agents.

Non-depolarising muscle relaxants (e.g. tubocurarine chloride)

The effect of these agents may be potentiated by hydrochlorothiazide.

Trimethoprim

Concomitant administration of ACE inhibitors and thiazides with trimethoprim increases the risk of hyperkalaemia.

Sotalol

Thiazide induced hypokalaemia can increase the risk of sotalol induced arrhythmia.

Alopurinol

Concomitant administration of ACE inhibitors and alopurinol increases the risk of renal damage and can lead to an increased risk of leucopenia.

Ciclosporin

Concomitant administration of ACE inhibitors and cyclosporine increases the risk of renal damage and hyperkalaemia.

Cytostatics, immunosuppressives, procainamide

Concomitant administration of ACE inhibitors can lead to increased risk of leucopenia (see section 4.4).

Alcohol

Alcohol may enhance the hypotensive effect of any antihypertensive.

Antacids

Cause a decrease in the bioavailability of ACE inhibitors.

Pressor amines (e.g. epinephrine (adrenaline))

Concomitant administration can lead to a reduced response to pressor amines, but insufficient to exclude their use.

Barbiturates or narcotics

Potentiation of orthostatic hypotension may occur.

Mammalian Target of Rapamycin (mTOR) inhibitors

Patients taking concomitant mTOR inhibitor (e.g., temsirolimus, sirolimus, everolimus) therapy may be at increased risk for angioedema (see section 4.4 Special warnings and precautions for use).

Other agents

Indometacin may diminish the antihypertensive effect of concomitantly administered ‘Carace’ Plus. The antihypertensive effect of ‘Carace’ Plus may be potentiated when given concomitantly with other agents likely to cause postural hypotension.

4.6 Pregnancy and lactation

Pregnancy:

ACE inhibitors:

EThe use of ACE inhibitors is not recommended during the first trimester of p?regnancy (see section 4.4).The use of ACE inhibitors is contra-indicated during the i2nd and 3rd trimester of pregnancy (see section 4.3 and 4.4)

dEpidemiological evidence regarding the risk of teratogenicity following exposure to ACE inhibitors during the first trimester of pregnancy has not been conclusive; however a small increase in risk cannot be excluded. Unless continued ACE inhibitor therapy is considered essential, patients planning pregnancy should be changed to alternative antihypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with ACE inhibitors should be stopped immediately, and, if appropriate, alternative therapy should be started.

ACE inhibitor therapy exposure during the second and third trimesters is known to induce human foetotoxicity (decreased renal function, oligohydramnios, skull ossification retardation) and neonatal toxicity (renal failure, hypotension, hyperkalaemia) (see also 5.3). Should exposure to ACE inhibitors have occurred from the second trimester of pregnancy, ultrasound check of renal function and skull is recommended. Infants whose mothers have taken ACE inhibitors should be closely observed for hypotension (see also sections 4.3 and 4.4).

Hydrochlorothiazide:

There is limited experience with hydrochlorothiazide during pregnancy, especially during the first trimester. Animal studies are insufficient.

Hydrochlorothiazide crosses the placenta. Based on the pharmacological mechanism of action of hydrochlorothiazide, its use during the second and third trimester may compromise foeto-placental perfusion and may cause foetal and neonatal effects like icterus, disturbance of electrolyte balance and thrombocytopenia.

Hydrochlorothiazide should not be used for gestational oedema, gestational hypertension or preeclampsia due to the risk of decreased plasma volume and placental hypoperfusion, without a beneficial effect on the course of the disease.

Hydrochlorothiazide should not be used for essential hypertension in pregnant women except in rare situations where no other treatment could be used.

Lactation

ACE inhibitors:

Because no information is available regarding the use of lisinopril-hydrochlorothiazide during breastfeeding, lisinopril-hydrochlorothiazide is not recommended and alternative treatments with better established safety profiles during breastfeeding are preferable, especially while nursing a newborn or preterm infant.

Hydrochlorothiazide:

Hydrochlorothiazide is excreted in human milk in small amounts. Thiazides in high doses causing intense diuresis can inhibit the milk production. The use of lisinopril-hydrochlorothiazide during breast feeding is not recommended. If lisinopril-hydrochlorothiazide is used during breast feeding, doses should be kept as low as possible.

4.7 Effects on ability to drive and use machines

As with other antihypertensives, lisinopril-hydrochlorothiazide combination products may have a mild to moderate effect on the ability to drive and use machines. Especially at the start of the treatment or when the dose is modified, and also when used in combination with alcohol, but these effects depend on the individual’s susceptibility.

When driving vehicles or operating machines it should be taken into account that occasionally dizziness or tiredness may occur.

4.8 Undesirable effects

‘Carace’ Plus is usually well tolerated. In clinical studies, side effects have usually been mild and transient, and in most instances have not required interruption of therapy. The side effects that have been observed have been limited to those reported previously with lisinopril or hydrochlorothiazide.

The following undesirable effects have been observed and reported during treatment with lisinopril and/or hydrochlorothiazide with the following frequencies: Very common (>10%), common (>1%, <10%), uncommon (>0.1, <1%), rare (>0.01, <0.1%), very rare (<0.01%), not known (cannot be estimated from the available data).

The most commonly reported ADRs are cough, dizziness, hypotension, and headache which may occur in 1 to 10% of treated patients. In clinical studies, side effects have usually been mild and transient, and in most instances have not required interruption of therapy.

Lisinopril

Blood and lymphatic system disorders

Rare

Decreases in haemoglobin, decreases in haematocrit

Very rare

Bone marrow depression, anaemia, thrombocytopenia, leucopenia, neutropenia, agranulocytosis (see section 4.4), haemolytic anaemia, lymphadenopathy, autoimmune disease

Metabolism and nutrition disorders

Very rare

Hypoglycaemia

Nervous system disorders and psychiatric disorders

Common

Dizziness, headache, syncope

Uncommon

Rare

Frequency unknown

Paraesthesia, vertigo, taste disturbance, sleep disturbances, mood alterations,

Mental confusion

Depressive symptoms

Cardiac and vascular disorders

Common

Orthostatic effects (including orthostatic hypotension)

Uncommon

Myocardial infarction or cerebrovascular accident, possibly secondary to excessive hypotension in high risk patients (see section 4.4), palpitations, tachycardia, Raynaud’s syndrome

Unknown

Flushing

Respiratory, thoracic and mediastinal disorders

Common

Cough (see section 4.4)

Uncommon

Rhinitis

Very rare

Bronchospasm, sinusitis, allergic alveolitis/eosinophilic pneumonia

Gastrointestinal disorders

Common

Diarrhoea, vomiting

Uncommon

Nausea, abdominal pain, indigestion

Rare

Dry mouth

Very rare

Pancreatitis, intestinal angioedema

Hepatobiliary disorders

Uncommon

Elevated liver enzymes and bilirubin

Very rare

Hepatitis - either hepatocellular or cholestatic jaundice, hepatic failure (see section 4.4)*

Skin and subcutaneous tissue disorders

Uncommon

Rash, pruritus

Rare

Hyp ersensitivity/angi oneurotic oedema: angioneurotic oedema of the face, extremities, lips, tongue, glottis, and/or larynx (see section 4.4), urticaria, alopecia, psoriasis

Very rare

Diaphoresis, pemphigus, toxic epidermal necrolysis, Stevens-Johnson Syndrome, erythema multiforme, cutaneous pseudolymphoma**

Renal and urinary disorders

Common

Renal dysfunction

Rare

Uraemia, acute renal failure

Very rare

Oliguria/anuria

Reproductive system and breast

disorders

Uncommon

Rare

Impotence

Gynaecomastia

Endocrine Disorders

Rare

Syndrome of inappropriate antidiuretic hormone secretion (SIADH)

General disorders and administration site conditions

Uncommon

Asthenia, fatigue

Investigations

Uncommon

Rare

Increases in blood urea, increases in serum creatinine, hyperkalaemia

Hyponatraemia

* Very rarely, it has been reported that in some patients the undesirable development of hepatitis has progressed to hepatic failure. Patients receiving lisinopril-hydrochlorothiazide combination who develop jaundice or marked elevations of hepatic enzymes should discontinue lisinopril-hydrochlorothiazide combination and receive appropriate medical follow up.

** A symptom complex has been reported which may include one or more of the following: fever, vasculitis, myalgia, arthralgia/arthritis, a positive antinuclear antibodies (ANA), elevated red blood cell sedimentation rate (ESR), eosinophilia and leucocytosis, rash, photosensitivity or other dermatological manifestations may occur.

Hydrochlorothiazide (frequencies unknown):

Infections and infestations

Sialadenitis

Blood and lymphatic system disorders

Leucopenia, neutropenia/agranulocytosis, thrombocytopenia, aplastic anaemia, haemolytic anaemia, bone marrow depression

Metabolism and nutrition disorders

Anorexia, hyperglycaemia, glycosuria, hyperuricaemia, electrolyte imbalance (including hyponatraemia, hypokalaemia, hypochloremic alkalosis and hypomagnesaemia), increases in cholesterol and triglycerides, gout, loss of appetite,

Psychiatric disorders

Restlessness, depression, sleep disturbance

Nervous system disorders

Paraesthesia, light-headedness

Eye disorders

Xanthopsia, transient blurred vision

Ear and labyrinth disorders

Vertigo

Cardiac disorders

Postural hypotension.

Vascular disorders

Necrotising angiitis (vasculitis, cutaneous vasculitis)

Respiratory, thoracic and mediastinal disorders

Respiratory distress (including pneumonitis and pulmonary oedema)

Gastrointestinal disorders

Gastric irritation, diarrhoea, constipation, pancreatitis

Hepatobiliary disorders

Jaundice (intrahepatic cholestatic jaundice)

Skin and subcutaneous tissue disorders

Photosensitivity reactions, rash, cutaneous lupus erythematosus-like reactions, reactivation of cutaneous lupus erythematosus, urticaria, anaphylactic reactions, toxic epidermal necrolysis, purpura

Musculo-skeletal, connective

tissue and bone

disorders

Muscle spasm, muscle weakness

Renal and urinary disorders

Renal dysfunction, interstitial nephritits

General disorders

Fever, weakness

Reporting of suspected adverse reaction

Reporting suspect adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme, at: www.mhra.gov.uk/yellowcard.

4.9 Overdose

Limited data are available for overdose in humans. Symptoms associated with overdosage of ACE inhibitors may include hypotension, circulatory shock, electrolyte disturbances, renal failure, hyperventilation, tachycardia, palpitations, bradycardia, dizziness, anxiety and cough.

The recommended treatment of overdose is intravenous infusion of normal saline solution. If hypotension occurs, the patient should be placed in the supine position. If available, treatment with angiotensin II infusion and/or intravenous catecholamines may also be considered. If ingestion is recent, take measures aimed at eliminating lisinopril (e.g. emesis, gastric lavage, administration of absorbents and sodium sulphate). Lisinopril may be removed from the general circulation by haemodialysis (see section 4.4). Pacemaker therapy is indicated for therapy-resistant bradycardia. Vital signs, serum electrolytes and creatinine concentrations should be monitored frequently.

Additional symptoms of hydrochlorothiazide overdose are increased diuresis, depression of consciousness (incl. coma), convulsions, paresis, cardiac arrhythmias and renal failure.

Bradycardia or extensive vagal reactions should be treated by administering atropine.

If digitalis has also been administered hypokalaemia may accentuate cardiac arrhythmias.

5.1 Pharmacodynamic properties

‘Carace’ Plus contains antihypertensive and diuretic activity. Lisinopril and hydrochlorothiazide have been used alone and concurrently for the treatment of hypertension where their effects are approximately additive.

Lisinopril is an inhibitor of the angiotensin-converting enzyme (ACE). Inhibition of the formation of angiotensin II results in vasodilation and a fall in blood pressure.

Hydrochlorothiazide is a diuretic and antihypertensive agent. Use of this agent alone results in increased renin secretion. Although lisinopril alone is antihypertensive, even in patients with low renin hypertension, concomitant administration with hydrochlorothiazide results in a greater reduction in blood pressure. Lisinopril attenuates the potassium loss associated with hydrochlorothiazide.

Two large randomised, controlled trials (ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial), and VA NEPHRON-D (The Veterans Affairs Nephropathy in Diabetes)) have examined the use of the combination of an ACE-inhibitor with an angiotensin II receptor blocker.

ONTARGET was a study conducted in patients with a history of cardiovascular or cerebrovascular disease, or type 2 diabetes mellitus accompanied by evidence of end-organ damage. VA NEPHRON-D was a study in patients with type 2 diabetes mellitus and diabetic nephropathy.

These studies have shown no significant beneficial effect on renal and/or cardiovascular outcomes and mortality, while an increased risk of hyperkalaemia, acute kidney injury and/or hypotension as compared to monotherapy was observed. Given their similar pharmacodynamic properties, these results are also relevant for other ACE inhibitors and angiotensin II receptor blockers.

ACE-inhibitors and angiotensin II receptor blockers should therefore not be used concomitantly in patients with diabetic nephropathy.

ALTITUDE (Aliskiren Trial in Type 2 Diabetes Using Cardiovascular and Renal Disease Endpoints) was a study designed to test the benefit of adding aliskiren to a standard therapy of an ACE-inhibitor or an angiotensin II receptor blocker in patients with type 2 diabetes mellitus and chronic kidney disease, cardiovascular disease, or both. The study was terminated early because of an increased risk of adverse outcomes. Cardiovascular death and stroke were both numerically more frequent in the aliskiren group than in the placebo group and adverse events and serious adverse events of interest (hyperkalaemia, hypotension and renal dysfunction) were more frequently reported in the aliskiren group than in the placebo group.

5.2 Pharmacokinetic properties

In clinical studies, peak serum concentrations of lisinopril occurred within 6 to 8 hours following oral administration. Declining serum concentrations exhibited a prolonged terminal phase which did not contribute to drug accumulation. This terminal phase probably represents saturable binding to ACE and was not proportional to dose. Lisinopril did not appear to be bound to other plasma proteins.

Lisinopril does not undergo significant metabolism and is excreted unchanged predominantly in the urine. Based on urinary recovery in clinical studies, the extent of absorption of lisinopril was approximately 25%. Lisinopril absorption was not influenced by the presence of food in the gastrointestinal tract.

On multiple dosing, lisinopril exhibited an effective accumulation half-life of 12 hours.

In patients with renal insufficiency, disposition of lisinopril was similar to that in patients with normal renal function until glomerular filtration rate reached 30 ml/min or less; peak and trough lisinopril levels, and time to peak then increased and time to steady state was sometimes prolonged. Animal studies indicate lisinopril crosses the blood-brain barrier poorly. No clinically significant pharmacokinetic interactions occurred when lisinopril was used concomitantly with propranolol, digoxin or hydrochlorothiazide.

When plasma levels of hydrochlorothiazide have been followed for at least 24 hours the plasma half-life has been observed to vary between 5.6 and 14.8 hours. Hydrochlorothiazide is not metabolised but is eliminated rapidly by the kidney. At least 61% of the oral dose is eliminated unchanged within 24 hours. Hydrochlorothiazide crosses the placental but not the blood-brain barrier.

Concomitant multiple doses of lisinopril and hydrochlorothiazide have little or no effect on the bioavailability of these drugs. The combination tablet is bioequivalent to concomitant administration of the separate entities.

5.3 Preclinical safety data

Lisinopril and hydrochlorothiazide are well established in medical use. Preclinical data is broadly consistent with clinical experience. For reproduction toxicity, see section 4.6.

6 PHARMACEUTICAL PARTICULARS

List of excipients

6.1


Mannitol BP

Calcium Phosphate Dibasic Hydrous EP Blue FD & C Aluminium Lake (E132) Starch EP

Pregelatinised Starch BP Magnesium Stearate EP

6.2    Incompatibilities

Not applicable

6.3    Shelf life

30 months - Bottles 36 months - Blisters

6.4    Special precautions for storage

Store in a dry place below 25°C.

6.5    Nature and contents of container

Blister packs of 28 tablets.

Bottles 56 tablets

6.6    Special precautions for disposal

Not applicable

7


MARKETING AUTHORISATION HOLDER

Bristol-Myers Squibb Pharmaceuticals Limited Uxbridge Business Park Sanderson Road,

Uxbridge, Middlesex,

UB81DH

8    MARKETING AUTHORISATION NUMBER(S)

PL 00025/0535

9 DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

11 February 2009

10 DATE OF REVISION OF THE TEXT

26/01/2016