Ciprofloxacin 2 Mg/Ml Solution For Infusion
SUMMARY OF PRODUCT CHARACTERISTICS 1 NAME OF THE MEDICINAL PRODUCT
Ciprofloxacin 2 mg/ml solution for infusion
2 QUALITATIVE AND QUANTITATIVE COMPOSITION
Contains ciprofloxacin 2 mg/ ml.
Each 50 ml vial contains 100 mg of ciprofloxacin (as lactate)
Each 100 ml vial contains 200 mg of ciprofloxacin (as lactate)
Excipients
Sodium (900 mg/100ml equivalent to 15.4 mmol sodium per litre).
For a full list of excipients, see section 6.1.
3 PHARMACEUTICAL FORM
Solution for infusion.
Clear, colourless or light yellow
4 CLINICAL PARTICULARS
4.1 Therapeutic indications
Ciprofloxacin 2 mg/ ml solution for infusion is indicated for the treatment of the following infections (see sections 4.4 and 5.1). Special attention should be paid to available information on resistance to ciprofloxacin before commencing therapy.
Consideration should be given to official guidance on the appropriate use of antibacterial agents.
Adults
• Lower respiratory tract infections due to Gram-negative bacteria
- exacerbations of chronic obstructive pulmonary disease
- broncho-pulmonary infections in cystic fibrosis or in bronchiectasis
- pneumonia
• Chronic suppurative otitis media
• Acute exacerbation of chronic sinusitis especially if these are caused by Gramnegative bacteria
• Urinary tract infections
• Epididymo-orchitis including cases due to Neisseria gonorrhoeae
• Pelvic inflammatory disease including cases due to Neisseria gonorrhoeae
I n the above genital tract infections when thought or known to be due to Neisseria gonorrhoeae it is particularly important to obtain local information on the prevalence of resistance to ciprofloxacin and to confirm susceptibility based on laboratory testing.
• Infections of the gastro-intestinal tract (e.g. travellers' diarrhoea) • Intra-abdominal infections • Infections of the skin and soft tissue caused by Gram-negative bacteria • Malignant external otitis • Infections of the bones and joints • Treatment of infections in neutropenic patients • Prophylaxis of infections in neutropenic patients • Inhalation anthrax (post-exposure prophylaxis and curative treatment)
• Broncho-pulmonary infections in cystic fibrosis caused by Pseudomonas aeruginosa
• Complicated urinary tract infections and pyelonephritis
• Inhalation anthrax (post-exposure prophylaxis and curative treatment)
Ciprofloxacin may also be used to treat severe infections in children and adolescents when this is considered to be necessary.
Treatment should be initiated only by physicians who are experienced in the treatment of cystic fibrosis and/or severe infections in children and adolescents (see sections 4.4 and 5.1).
4.2 Posology and method of administration
The dosage is determined by the indication, the severity and the site of the infection, the susceptibility to ciprofloxacin of the causative organism(s), the renal function of the patient and, in children and adolescents the body weight.
The duration of treatment depends on the severity of the illness and on the clinical and bacteriological course.
After intravenous initiation of treatment, the treatment can be switched to oral treatment with tablet or suspension if clinically indicated at the discretion of the physician. IV treatment should be followed by oral route as soon as possible.
In severe cases or if the patient is unable to take tablets (e.g. patients on enteral nutrition), it is recommended to commence therapy with intravenous ciprofloxacin until a switch to oral administration is possible.
Treatment of infections due to certain bacteria (e.g. Pseudomonas aeruginosa, Acinetobacter or Staphylococci) may require higher ciprofloxacin doses and coadministration with other appropriate antibacterial agents.
Treatment of some infections (e.g. pelvic inflammatory disease, intra-abdominal infections, infections in neutropenic patients and infections of bones and joints) may require co-administration with other appropriate antibacterial agents depending on the pathogens involved.
Adults
Indications |
Daily dose in mg |
Total duration of treatment (including switch to oral therapy as soon as possible) | |
Infections of the lower respiratory tract |
400 mg twice daily to 400 mg three times a day |
7 to 14 days | |
Infections of the upper respirator y tract |
Acute exacerbation of chronic sinusitis |
400 mg twice daily to 400 mg three times a day |
7 to 14 days |
Chronic suppurative otitis media |
400 mg twice daily to 400 mg three times a day |
7 to 14 days | |
Malignant external otitis |
400 mg three times a day |
28 days up to 3 months | |
Urinary tract infections |
Complicated and uncomplicat ed pyelonephrit is |
400 mg twice daily to 400 mg three times a day |
7 to 21 days, it can be continued for longer than 21 days in some specific circumstances (such as abscesses) |
Prostatitis |
400 mg twice daily to 400 mg three times a day |
2 to 4 weeks (acute) | |
Genital tract infections |
Epididymo-orchitis and pelvic inflammator y diseases |
400 mg twice daily to 400 mg three times a day |
at least 14 days |
Infections of the gastro-intestinal tract and intraabdominal infections |
Diarrhoea caused by bacterial pathogens including Shigella spp. other than Shigella dysenteriae type 1 and empirical treatment of severe travellers’ diarrhoea |
400 mg twice daily |
1 day |
Indications |
Daily dose in mg |
Total duration of treatment (including switch to oral therapy as soon as possible) | |
Diarrhoea caused by Shigella dysenteriae type 1 |
400 mg twice daily |
5 days | |
Diarrhoea caused by Vibrio cholerae |
400 mg twice daily |
3 days | |
Typhoid fever |
400 mg twice daily |
7 days | |
Intra-abdominal infections due to Gram-negative bacteria |
400 mg twice daily to 400 mg three times a day |
5 to 14 days | |
Infections of the skin and soft tissue |
400 mg twice daily to 400 mg three times a day |
7 to 14 days | |
Bone and joint infections |
400 mg twice daily to 400 mg three times a day |
max. of 3 months | |
Treatment of infections or prophylaxis of infections in neutropenic patients Ciprofloxacin should be coadministered with appropriate antibacterial agent(s) in accordance to official guidance. |
400 mg twice daily to 400 mg three times a day |
Therapy should be continued over the entire period of neutropenia | |
Inhalation anthrax post-exposure prophylaxis and curative treatment for persons requiring parenteral treatment Drug administration should begin as soon as possible after suspected or confirmed exposure. |
400 mg twice daily |
60 days from the confirmation of Bacillus anthracis exposure |
Indication |
Daily dose in mg |
Total duration of treatment (including switch to oral therapy as soon as possible) |
Cystic fibrosis |
10 mg/kg body weight three times a day with a maximum of 400 mg per dose. |
10 to 14 days |
Complicated urinary tract infections and pyelonephrit is |
6 mg/kg body weight three times a day to 10 mg/kg body weight three times a day with a maximum of 400 mg per dose. |
10 to 21 days |
Inhalation anthrax postexposure curative treatment for persons requiring parenteral treatment |
10 mg/kg body weight twice daily to 15 mg/kg body weight twice daily with a maximum of 400 mg per dose. |
60 days from the confirmation of Bacillus anthracis exposure |
Drug administrati on should begin as soon as possible after suspected or confirmed exposure. | ||
Other severe infections |
10 mg/kg body weight three times a day with a maximum of 400 mg per dose. |
According to the type of infections |
Geriatric _ patients
Geriatric patients should receive a dose selected according to the severity of the infection and the patient's creatinine clearance.
Renal and hepatic impairment
Recommended starting and maintenance doses for patients with impaired renal function:
Creatinine Clearance [mL/min/1.73 m2] |
Serum Creatinine [pmol/L] |
Intravenous Dose [mg] |
> 60 |
< 124 |
See Usual Dosage. |
30-60 |
124 to 168 |
200-400 mg every 12 h |
< 30 |
> 169 |
200-400 mg every 24 h |
Patients on haemodialysis |
> 169 |
200-400 mg every 24 h (after dialysis) |
Patients on peritoneal dialysis |
> 169 |
200-400 mg every 24 h |
In patients with impaired liver function no dose adjustment is required.
Dosing in children with impaired renal and/or hepatic function has not been studied.
Method of administration
Ciprofloxacin 2 mg/ml solution for infusion should be checked visually prior to use. It must not be used if cloudy.
Ciprofloxacin should be administered by intravenous infusion. For children, the infusion duration is 60 minutes.
In adult patients, infusion time is 60 minutes for 400 mg and 30 minutes for 200 mg Ciprofloxacin 2 mg/ml solution for infusion. Slow infusion into a large vein will minimise patient discomfort and reduce the risk of venous irritation.
The infusion solution can be infused either directly or after mixing with other compatible infusion solutions (see section 6.2).
4.3
Contraindications
Hypersensitivity to the active substance, to other quinolones or to any of the excipients (see section 6.1).
Concomitant administration of ciprofloxacin and tizanidine (see section 4.5).
4.4 Special warnings and precautions for use
Cardiac disorders
Caution should be taken when using fluoroquinolones, including <X>, in patients with known risk factors for prolongation of the QT interval such as, for example:
- congenital long QT syndrome
- concomitant use of drugs that are known to prolong the QT interval (e.g. Class IA and III anti-arrhythmics, tricyclic antidepressants, macrolides, antipsychotics)
- uncorrected electrolyte imbalance (e.g. hypokalaemia, hypomagnesaemia)
- cardiac disease (e.g. heart failure, myocardial infarction, bradycardia)
- Elderly patients and women may be more sensitive to QTc-prolonging medications. Therefore, caution should be taken when using fluoroquinolones, including Ciprofloxacin, in these populations.
(See section 4.2 Elderly, section 4.5, section 4.8, section 4.9).
Severe infections and mixed infections with Gram-positive and anaerobic pathogens Ciprofloxacin monotherapy is not suited for treatment of severe infections and infections that might
be due to Gram-positive or anaerobic pathogens. In such infections ciprofloxacin must be coadministered with other appropriate antibacterial agents.
Streptococcal Infections (including Streptococcus pneumoniae)
Ciprofloxacin is not recommended for the treatment of streptococcal infections due to
inadequate
efficacy.
Genital tract infections
Epididymo-orchitis and pelvic inflammatory diseases may be caused by fluoroquinoloneresistant Neisseria gonorrhoeae. Ciprofloxacin should be coadministered with another appropriate antibacterial agent unless ciprofloxacin-resistant Neisseria gonorrhoeae can be excluded. If clinical improvement is not achieved after 3 days of treatment, the therapy should be reconsidered.
Intra-abdominal infections
There are limited data on the efficacy of ciprofloxacin in the treatment of postsurgical
intraabdominal
infections.
Travellers' diarrhoea
The choice of ciprofloxacin should take into account information on resistance to ciprofloxacin in relevant pathogens in the countries visited.
Infections of the bones and joints
Ciprofloxacin should be used in combination with other antimicrobial agents depending on the results of the microbiological documentation.
Inhalational anthrax
Use in humans is based on in-vitro susceptibility data and on animal experimental data together with limited human data. Treating physicians should refer to national and /or international consensus documents regarding the treatment of anthrax.
Children and adolescents
The use of ciprofloxacin in children and adolescents should follow available official guidance.
Ciprofloxacin treatment should be initiated only by physicians who are experienced in the treatment of cystic fibrosis and/or severe infections in children and adolescents.
Ciprofloxacin has been shown to cause arthropathy in weight-bearing joints of immature animals.
Safety data from a randomised double-blind study on ciprofloxacin use in children (ciprofloxacin:
n=335, mean age = 6.3 years; comparators: n=349, mean age = 6.2 years; age range = 1 to 17 years) revealed an incidence of suspected drug-related arthropathy (discerned from joint-related clinical signs and symptoms) by Day +42 of 7.2% and 4.6%. Respectively, an incidence of drugrelated arthropathy by 1-year follow-up was 9.0% and 5.7%. The increase of suspected drug-related arthropathy cases over time was not statistically significant between groups. Treatment should be initiated only after a careful benefit/risk evaluation, due to possible adverse events related to joints and/or surrounding tissue.
Broncho-pulmonary infections in cystic fibrosis
Clinical trials have included children and adolescents aged 5-17 years. More limited experience is
available in treating children between 1 and 5 years of age.
Complicated urinary tract infections and pyelonephritis
Ciprofloxacin treatment of urinary tract infections should be considered when other treatments cannot be used, and should be based on the results of the microbiological documentation.
Clinical trials have included children and adolescents aged 1-17 years.
Other specific severe infections
Other severe infections in accordance with official guidance, or after careful benefit-risk evaluation when other treatments cannot be used, or after failure to conventional therapy and when the microbiological documentation can justify a ciprofloxacin use.
The use of ciprofloxacin for specific severe infections other than those mentioned above has not been evaluated in clinical trials and the clinical experience is limited. Consequently, caution is advised when treating patients with these infections.
Hypersensitivity
Hypersensitivity and allergic reactions, including anaphylaxis and anaphylactoid reactions, may occur following a single dose (see section 4.8) and may be life-threatening. If such reaction occurs, ciprofloxacin should be discontinued and an adequate medical treatment is required.
Musculoskeletal System
Ciprofloxacin should generally not be used in patients with a history of tendon disease/disorder related to quinolone treatment. Nevertheless, in very rare instances, after microbiological documentation of the causative organism and evaluation of the risk/benefit balance, ciprofloxacin may be prescribed to these patients for the treatment of certain severe infections, particularly in the event of failure of the standard therapy or bacterial resistance, where the microbiological data may justify the use of ciprofloxacin.
Tendinitis and tendon rupture (especially Achilles tendon), sometimes bilateral, may occur with ciprofloxacin, as soon as the first 48 hours of treatment. The risk of tendinopathy may be increased in elderly patients or in patients concomitantly treated with corticosteroids (see section 4.8).
At any sign of tendinitis (e.g. painful swelling, inflammation), ciprofloxacin treatment should be discontinued. Care should be taken to keep the affected limb at rest.
Ciprofloxacin should be used with caution in patients with myasthenia gravis (see section 4.8).
Photosensitivity
Ciprofloxacin has been shown to cause photosensitivity reactions. Patients taking ciprofloxacin should be advised to avoid direct exposure to either extensive sunlight or UV irradiation during treatment (see section 4.8).
Central Nervous System
Quinolones are known to trigger seizures or lower the seizure threshold.
Ciprofloxacin should be used with caution in patients with CNS disorders which may be predisposed to seizure. If seizures occur ciprofloxacin should be discontinued (see section 4.8). Psychiatric reactions may occur even after the first administration of ciprofloxacin. In rare cases, depression or psychosis can progress to self-endangering behaviour. In these cases, ciprofloxacin should be discontinued.
Cases of polyneuropathy (based on neurological symptoms such as pain, burning, sensory disturbances or muscle weakness, alone or in combination) have been reported in patients receiving ciprofloxacin. Ciprofloxacin should be discontinued in patients experiencing symptoms of neuropathy, including pain, burning, tingling, numbness, and/or weakness in order to prevent the development of an irreversible condition (see section 4.8).
Cardiac disorders
Since ciprofloxacin is associated with cases of QT prolongation (see section 4.8), caution should be exercised when treating patients at risk for torsades de pointes arrhythmia.
Gastrointestinal System
The occurrence of severe and persistent diarrhoea during or after treatment (including several weeks after treatment) may indicate an antibiotic-associated colitis (life-threatening with possible fatal outcome), requiring immediate treatment (see section 4.8). In such cases, ciprofloxacin should immediately be discontinued, and an appropriate therapy initiated. Anti-peristaltic drugs are contraindicated in this situation.
Renal and urinary system
Crystalluria related to the use of ciprofloxacin has been reported (see section 4.8). Patients receiving ciprofloxacin should be well hydrated and excessive alkalinity of the urine should be avoided.
Hepatobiliary system
Cases of hepatic necrosis and life-threatening hepatic failure have been reported with ciprofloxacin
(see section 4.8). In the event of any signs and symptoms of hepatic disease (such as anorexia,
jaundice, dark urine, pruritus, or tender abdomen), treatment should be discontinued.
Glucose-6-phosphate dehydrogenase deficiency
Haemolytic reactions have been reported with ciprofloxacin in patients with glucose-6-phosphate
dehydrogenase deficiency. Ciprofloxacin should be avoided in these patients unless the potential
benefit is considered to outweigh the possible risk. In this case, potential occurrence of haemolysis should be monitored.
Resistance
During or following a course of treatment with ciprofloxacin bacteria that demonstrate resistance to
ciprofloxacin may be isolated, with or without a clinically apparent superinfection. There may be a
particular risk of selecting for ciprofloxacin-resistant bacteria during extended durations of treatment
and when treating nosocomial infections and/or infections caused by Staphylococcus and
Pseudomonas species.
Cytochrome P450
Ciprofloxacin inhibits CYPl A2 and thus may cause increased serum concentration of concomitantly
administered substances metabolised by this enzyme (e.g. theophylline, clozapine, ropinirole,
tizanidine). Co-administration of ciprofloxacin and tizanidine is contra-indicated. Therefore, patients
taking these substances concomitantly with ciprofloxacin should be monitored closely for clinical
signs of overdose, and determination of serum concentrations (e.g. of theophylline) may be
necessary (see section 4.5).
Methotrexate
The concomitant use of ciprofloxacin with methotrexate is not recommended (see section 4.5).
Interaction with tests
The in-vitro activity of ciprofloxacin against Mycobacterium tuberculosis might give false negative
bacteriological test results in specimens from patients currently taking ciprofloxacin.
Local intravenous site reactions have been reported with the intravenous administration of ciprofloxacin. These reactions are more frequent if the infusion time is 30 minutes or less. These may appear as local skin reactions which resolve rapidly Upon completion of the infusion. Subsequent intravenous administration is not contraindicated unless the reactions recur or worsen.
4.5 Interaction with other medicinal products and other forms of interaction
Drugs known to prolong QT interval
Ciprofloxacin, like other fluoroquinolones, should be used with caution in patients receiving drugs known to prolong the QT interval (e.g. Class IA and III anti-arrhythmics, tricyclic antidepressants, macrolides, antipsychotics) (see section 4.4).
Effects of other medicinal products on ciprofloxacin:
Probenecid
Probenecid interferes with renal secretion of ciprofloxacin. Co-administration of probenecid and ciprofloxacin increases ciprofloxacin serum concentrations.
Effects of ciprofloxacin on other medicinal _ products:
Tizanidine
Tizanidine must not be administered together with ciprofloxacin (see section 4.3). In a clinical study with healthy subjects, there was an increase in serum tizanidine concentration (Cmax increase: 7-fold, range: 4 to 21-fold; AUC increase: 10-fold, range: 6 to 24-fold) when given concomitantly with ciprofloxacin. Increased serum tizanidine concentration is associated with a potentiated hypotensive and sedative effect.
Methotrexate
Renal tubular transport of methotrexate may be inhibited by concomitant administration of ciprofloxacin, potentially leading to increased plasma levels of methotrexate and increased risk of methotrexate-associated toxic reactions. The concomitant use is not recommended (see section 4.4).
Concurrent administration of ciprofloxacin and theophylline can cause an undesirable increase in serum theophylline concentration. This can lead to theophylline-induced side effects that may rarely be life threatening or fatal. During the combination, serum theophylline concentrations should be checked and the theophylline dose reduced as necessary (see section 4.4).
Other xanthine derivatives
On concurrent administration of ciprofloxacin and caffeine or pentoxifylline (oxpentifylline), raised serum concentrations of these xanthine derivatives were reported.
Phenytoin
Simultaneous administration of ciprofloxacin and phenytoin may result in increased or reduced serum levels of phenytoin such that monitoring of drug levels is recommended.
Oral anticoagulants
Simultaneous administration of ciprofloxacin with warfarin may augment its anticoagulant effects. There have been many reports of increases in oral anti-coagulant activity in patients receiving antibacterial agents, including fluoroquinolones. The risk may vary with the underlying infection, age and general status of the patient so that the contribution of the fluoroquinolone to the increase in INR (international normalised ratio) is difficult to assess. It is recommended that the INR should be monitored frequently during and shortly after co-administration of ciprofloxacin with an oral anticoagulant agent.
Ropinirole
It was shown in a clinical study that concomitant use of ropinirole with ciprofloxacin, a moderate inhibitor of the CYP450 1A2 isozyme, results in an increase of Cmax and AUC of ropinirole by 60% and 84%, respectively. Monitoring of ropinirole-related side effects and dose adjustment as appropriate is recommended during and shortly after co-administration with ciprofloxacin (see section 4.4).
Clozapine
Following concomitant administration of 250 mg ciprofloxacin with clozapine for 7 days, serum concentrations of clozapine and N-desmethylclozapine were increased by
29% and 31%, respectively. Clinical surveillance and appropriate adjustment of clozapine dosage during and shortly after co-administration with ciprofloxacin are advised (see section 4.4).
4.6 Pregnancy and lactation
Pregnancy
The data that are available on administration of ciprofloxacin to pregnant women indicates no malformative or feto/neonatal toxicity of ciprofloxacin. Animal studies do not indicate direct or indirect harmful effects with respect to reproductive toxicity. In juvenile and prenatal animals exposed to quinolones, effects on immature cartilage have been observed, thus, it cannot be excluded that the drug could cause damage to articular cartilage in the human immature organism / foetus (see section 5.3).
As a precautionary measure, it is preferable to avoid the use of ciprofloxacin during pregnancy.
Lactation
Ciprofloxacin is excreted in breast milk. Due to the potential risk of articular damage, ciprofloxacin should not be used during breast-feeding.
4.7 Effects on ability to drive and use machines
Due to its neurological effects, ciprofloxacin may affect reaction time. Thus, the ability to drive or to operate machinery may be impaired.
4.8 Undesirable effects
The most commonly reported adverse drug reactions (ADRs) are nausea, diarrhoea, vomiting, transient increase in transaminases, rash, and injection and infusion site reactions.
ADRs derived from clinical studies and post-marketing surveillance with Ciprofloxacin 2 mg/ml solution for infusion (oral, intravenous and sequential therapy) sorted by categories of frequency are listed below. The frequency analysis takes into account data from both oral and intravenous administration of ciprofloxacin.
System Organ |
Common |
Uncommon |
Rare |
Very Rare |
Frequency not |
Class |
> 1/100 to < 1/10 |
> 1/1 000 to < 1/100 |
> 1/10 000 to < 1/1 000 |
< 1/10 000 |
known (cannot be estimated from available data) |
System Organ Class |
Common > 1/100 to < 1/10 |
Uncommon > 1/1 000 to < 1/100 |
Rare > 1/10 000 to < 1/1 000 |
Very Rare < 1/10 000 |
Frequency not known (cannot be estimated from available data) |
Infections and Infestations |
Mycotic superinfections |
Antibiotic associated colitis (very rarely with possible fatal outcome) (see section 4.4) | |||
Blood and Lymphatic System Disorders |
Eosinophilia |
Leukopenia Anaemia Neutropenia Leukocytosis Thrombocytopenia Thrombocytaemia |
Haemolytic anaemia Agranulocytosis Pancytopenia (life- threatening) Bone marrow depression (life-threatening) | ||
Immune System Disorders |
Allergic reaction Allergic oedema / angiooedema |
Anaphylactic reaction Anaphylactic shock (life-threatening) (see section 4.4) Serum sicknesslike reaction | |||
Metabolism and Nutrition Disorders |
Anorexia |
Hyperglycaemia | |||
Psychiatric Disorders |
Psychomotor hyperactivity / agitation |
Confusion and disorientation Anxiety reaction Abnormal dreams Depression Hallucinations |
Psychotic reactions (see section 4.4) |
System Organ Class |
Common > 1/100 to < 1/10 |
Uncommon > 1/1 000 to < 1/100 |
Rare > 1/10 000 to < 1/1 000 |
Very Rare < 1/10 000 |
Frequency not known (cannot be estimated from available data) |
Nervous System Disorders |
Headache Dizziness Sleep disorders Taste disorders |
Par- and Dysaesthesia Hypoaesthesia Tremor Seizures (see section 4.4) Vertigo |
Migraine Disturbed coordination Gait disturbance Olfactory nerve disorders Intracranial hypertension |
Peripheral neuropathy (see section 4.4) | |
Eye Disorders |
Visual disturbances |
Visual colour distortions | |||
Ear and Labyrinth Disorders |
Tinnitus Hearing loss / Hearing impaired | ||||
Cardiac Disorders |
Tachycardia |
Not known : ventricular arrhythmia and torsades de pointes (reported predominantly in patients with risk factors for QT prolongation), ECG QT prolonged (see section 4.4 and 4.9). | |||
Vascular Disorders |
Vasodilatation Hypotension Syncope |
Vasculitis | |||
Respiratory, Thoracic and Mediastinal Disorders |
Dyspnoea (including asthmatic condition) |
System Organ Class |
Common > 1/100 to < 1/10 |
Uncommon > 1/1 000 to < 1/100 |
Rare > 1/10 000 to < 1/1 000 |
Very Rare < 1/10 000 |
Frequency not known (cannot be estimated from available data) |
Gastrointestinal Disorders |
Nausea Diarrhoea |
Vomiting Gastrointestinal and abdominal pains Dyspepsia Flatulence |
Pancreatitis | ||
Hepatobiliary Disorders |
Increase in transaminases Increased bilirubin |
Hepatic impairment Cholestatic icterus Hepatitis |
Liver necrosis (very rarely progressing to life-threatening hepatic failure) (see section 4.4) | ||
Skin and Subcutaneous Tissue Disorders |
Rash Pruritus Urticaria |
Photosensitivity reactions (see section 4.4) |
Petechiae Erythema multiforme Erythema nodosum Stevens-Johnson syndrome (potentially life-threatening) Toxic epidermal necrolysis (potentially life-threatening) | ||
Musculoskeletal, Connective Tissue and Bone Disorders |
Musculoskeletal pain (e.g. extremity pain, back pain, chest pain) Arthralgia |
Myalgia Arthritis Increased muscle tone and cramping |
Muscular weakness Tendinitis Tendon rupture (predominantly Achilles tendon) (see section 4.4) Exacerbation of symptoms of myasthenia gravis (see section 4.4) |
System Organ Class |
Common > 1/100 to < 1/10 |
Uncommon > 1/1 000 to < 1/100 |
Rare > 1/10 000 to < 1/1 000 |
Very Rare < 1/10 000 |
Frequency not known (cannot be estimated from available data) |
Renal and Urinary Disorders |
Renal impairment |
Renal failure Haematuria Crystalluria (see section 4.4) Tubulointerstitial nephritis | |||
General Disorders and Administration Site Conditions |
Injection and infusion site reactions (only intravenous administration) |
Asthenia Fever |
Oedema Sweating (hyperhidrosis) | ||
Investigations |
Increase in blood alkaline phosphatase |
Prothrombin level abnormal Increased amylase |
*These events were reported during the postmarketing period and were observed predominantly among patients with further risk factors for QT prolongation (see section 4.4).
The following undesirable effects have a higher frequency category in the subgroups of patients receiving intravenous or sequential (intravenous to oral) treatment:
Common |
Vomiting, Transient increase in transaminases, Rash |
Uncommon |
Thrombocytopenia, Thrombocytaemia, Confusion and disorientation, Hallucinations, Par- and dysaesthesia, Seizures, Vertigo, Visual disturbances, Hearing loss, Tachycardia, Vasodilatation, Hypotension, Transient hepatic impairment, Cholestatic icterus, Renal failure, Oedema |
Rare |
Pancytopenia, Bone marrow depression, Anaphylactic shock, Psychotic reactions, Migraine, Olfactory nerve disorders, Hearing impaired, Vasculitis, Pancreatitis, Liver necrosis, Petechiae, Tendon rupture |
Paediatric _ patients
The incidence of arthropathy, mentioned above, is referring to data collected in studies with adults. In children, arthropathy is reported to occur commonly (see section 4.4).
4.9 Overdose
An overdose of 12 g has been reported to lead to mild symptoms of toxicity. An acute overdose of 16 g has been reported to cause acute renal failure.
Symptoms in overdose consist of dizziness, tremor, headache, tiredness, seizures, hallucinations, confusion, abdominal discomfort, renal and hepatic impairment as well as crystalluria and haematuria. Reversible renal toxicity has been reported.
In the event of overdose, symptomatic treatment should be implemented. ECG monitoring should be undertaken, because of the possibility of QT interval prolongation.
Apart from routine emergency measures, it is recommended to monitor renal function, including urinary pH and acidify, if required, to prevent crystalluria.
Patients should be kept well hydrated.
Only a small quantity of ciprofloxacin (<10%) is eliminated by haemodialysis or peritoneal dialysis.
5 PHARMACOLOGICAL PROPERTIES
5.1 Pharmacodynamic properties
Pharmacotherapeutic group: Fluoroquinolones, ATC code: J01MA02
Mechanism of action:
As a fluoroquinolone antibacterial agent, the bactericidal action of ciprofloxacin results from the inhibition of both type II topoisomerase (DNA-gyrase) and topoisomerase IV, required for bacterial DNA replication, transcription, repair and recombination.
PK/PD relationship:
Efficacy mainly depends on the relation between the maximum concentration in serum (Cmax) and the minimum inhibitory concentration (MIC) of ciprofloxacin for a bacterial pathogen and the relation between the area under the curve (AUC) and the
MIC.
Mechanism of resistance:
In-vitro resistance to ciprofloxacin can be acquired through a stepwise process by target site mutations in both DNA gyrase and topoisomerase IV. The degree of crossresistance between ciprofloxacin and other fluoroquinolones that results is variable. Single mutations may not result in clinical resistance, but multiple mutations generally result in clinical resistance to many or all active substances within the class.
Impermeability and/or active substance efflux pump mechanisms of resistance may have a variable effect on susceptibility to fluoroquinolones, which depends on the physiochemical properties of the various active substances within the class and the affinity of transport systems for each active substance. All in-vitro mechanisms of resistance are commonly observed in clinical isolates. Resistance mechanisms that inactivate other antibiotics such as permeation barriers (common in Pseudomonas aeruginosa! and efflux mechanisms may affect susceptibility to ciprofloxacin.
Plasmid-mediated resistance encoded by qnr-genes has been reported.
Spectrum of antibacterial activity:
Breakpoints separate susceptible strains from strains with intermediate susceptibility and the latter from resistant strains:
EUCAST Recommendations
Microorganisms |
Susceptible |
Resistant |
Enterobacteria |
S < 0.5 mg/L |
R > 1 mg/L |
Pseudomonas |
S < 0.5 mg/L |
R > 1 mg/L |
Acinetobacter |
S < 1 mg/L |
R > 1 mg/L |
Staphylococcus spp.1 |
S < 1 mg/L |
R > 1 mg/L |
Haemophilus influenzae and Moraxella catarrhalis |
S < 0.5 mg/L |
R > 0.5 mg/L |
Neisseria gonorrhoeae |
S < 0.03 mg/L |
R > 0.06 mg/L |
Neisseria meningitidis |
S < 0.03 mg/L |
R > 0.06 mg/L |
Non-species-related breakpoints* |
S < 0.5 mg/L |
R > 1 mg/L |
1 Staphylococcus spp. - breakpoints for ciprofloxacin relate to high dose therapy.
* Non-species-related breakpoints have been determined mainly on the basis of PK/PD data and are independent of MIC distributions of specific species. They are for use only for species that have not been given a species-specific breakpoint and not for those species where susceptibility testing is not recommended.
The prevalence of acquired resistance may vary geographically and with time for selected species and local information on resistance is desirable, particularly when treating severe infections. As necessary, expert advice should be sought when the local prevalence of resistance is such that the utility of the agent in at least some types of infections is questionable.
Groupings of relevant species according to ciprofloxacin susceptibility (for Streptococcus species see section 4.4)
COMMONLY SUSCEPTIBLE SPECIES
Aerobic Gram-positive micro-organisms
Bacillus anthracis (1)
Aerobic Gram-negative micro-organisms Aeromonas spp.
Brucella spp.
Citrobacter koseri Francisella tularensis Haemophilus ducreyi Haemophilus influenzae *
Legionella spp.
Moraxella catarrhalis *
Neisseria meningitidis Pasteurella spp.
Salmonella spp.*
Shigella spp. *
Vibrio spp.
Yersinia pestis
Anaerobic micro-organisms
Mobiluncus
Other micro-organisms
Chlamydia trachomatis ($)
Chlamydia pneumoniae ($)
Mycoplasma hominis ($)
Mycoplasma pneumoniae ($)
SPECIES FOR WHICH ACQUIRED RESISTANCE MAY BE A PROBLEM
Aerobic Gram-positive micro-organisms
Enterococcus faecalis ($)
Staphylococcus spp. *(2)
Aerobic Gram-negative micro-organisms
Acinetobacter baumannii+
Burkholderia cepacia + *
Campylobacter spp.*
Citrobacter freundii*
Enterobacter aerogenes Enterobacter cloacae *
Escherichia coli *
Klebsiella oxytoca Klebsiella pneumoniae*
Morganella morganii*
Neisseria gonorrhoeae*
Proteus mirabilis*
Proteus vulgaris *
Providencia spp.
Pseudomonas aeruginosa*
Pseudomonas fluorescens Serratia marcescens*
Anaerobic micro-organisms Peptostreptococcus spp.
Propionibacterium acnes
INHERENTLY RESISTANT ORGANISMS
Aerobic Gram-positive micro-organisms
Actinomyces Enteroccus faecium Listeria monocytogenes
Aerobic Gram-negative micro-organisms
Stenotrophomonas maltophilia
Anaerobic micro-organisms Excepted as listed above
Other micro-organisms
Mycoplasma genitalium Ureaplasma urealitycum
* Clinical efficacy has been demonstrated for susceptible isolates in approved clinical indications
+ Resistance rate > 50% in one or more EU countries
($): Natural intermediate susceptibility in the absence of acquired mechanism of
resistance
(1) : Studies have been conducted in experimental animal infections due to inhalations of Bacillus anthracis spores; these studies reveal that antibiotics starting early after exposition avoid the occurrence of the disease if the treatment is made up to the decrease of the number of spores in the organism under the infective dose. The recommended use in human subjects is based primarily on in-vitro susceptibility and on animal experimental data together with limited human data. Two-month treatment duration in adults with oral ciprofloxacin given at the following dose, 500 mg bid, is considered as effective to prevent anthrax infection in humans. The treating physician should refer to national and /or international consensus documents regarding treatment of anthrax.
(2) : Methicillin-resistant S. aureus very commonly express co-resistance to fluoroquinolones. The rate of resistance to methicillin is around 20 to 50% among all staphylococcal species and is usually higher in nosocomial isolates.
5.2 Pharmacokinetic properties
Absorption
Following an intravenous infusion of ciprofloxacin the mean maximum serum concentrations were achieved at the end of infusion. Pharmacokinetics of ciprofloxacin were linear over the dose range up to 400 mg administered intravenously.
Comparison of the pharmacokinetic parameters for a twice a day and three times a day intravenous dose regimen indicated no evidence of drug accumulation for ciprofloxacin and its metabolites.
A 60-minute intravenous infusion of 200 mg ciprofloxacin or the oral administration of 250 mg ciprofloxacin, both given every 12 hours, produced an equivalent area under the serum concentration time curve (AUC).
A 60-minute intravenous infusion of 400 mg ciprofloxacin every 12 hours was bioequivalent to a 500 mg oral dose every 12 hours with regard to AUC.
The 400 mg intravenous dose administered over 60 minutes every 12 hours resulted in a Cmax similar to that observed with a 750 mg oral dose.
A 60-minute infusion of 400 mg ciprofloxacin every 8 hours is equivalent with respect to AUC to 750 mg oral regimen given every 12 hours.
Distribution
Protein binding of ciprofloxacin is low (20-30%). Ciprofloxacin is present in plasma largely in a non-ionised form and has a large steady state distribution volume of 2-3 L/kg body weight. Ciprofloxacin reaches high concentrations in a variety of tissues such as lung (epithelial fluid, alveolar macrophages, biopsy tissue), sinuses, inflamed lesions (cantharides blister fluid), and the urogenital tract (urine, prostate, endometrium) where total concentrations exceeding those of plasma concentrations are reached.
Metabolism
Low concentrations of four metabolites have been reported, which were identified as: desethyleneciprofloxacin (M 1), sulphociprofloxacin (M 2), oxociprofloxacin (M 3) and formylciprofloxacin (M 4). The metabolites display in-vitro antimicrobial activity but to a lower degree than the parent compound.
Ciprofloxacin is known to be a moderate inhibitor of the CYP 450 1A2 iso-enzymes.
Elimination
Ciprofloxacin is largely excreted unchanged both renally and, to a smaller extent, faecally.
Excretion of ciprofloxacin (% of dose) | ||
Intravenous Administration | ||
Urine |
Faece s | |
Ciprofloxacin |
61.5 |
15.2 |
Metabolites (Mi-M4) |
9.5 |
2.6 |
Renal clearance is between 180-300 mL/kg/h and the total body clearance is between 480-600 mL/kg/h. Ciprofloxacin undergoes both glomerular filtration and tubular secretion. Severely impaired renal function leads to increased half lives of ciprofloxacin of up to 12 h.
Non-renal clearance of ciprofloxacin is mainly due to active trans-intestinal secretion and metabolism. 1% of the dose is excreted via the biliary route. Ciprofloxacin is present in the bile in high concentrations.
Paediatric _ patients
The pharmacokinetic data in paediatric patients are limited.
In a study in children Cmax and AUC were not age-dependent (above one year of age). No notable increase in Cmax and AUC upon multiple dosing (10 mg/kg three times daily) was observed.
In 10 children with severe sepsis Cmax was 6.1 mg/L (range 4.6-8.3 mg/L) after a 1-hour intravenous infusion of 10 mg/kg in children aged less than 1 year compared to
7.2 mg/L (range 4.7-11.8 mg/L) for children between 1 and 5 years of age. The AUC values were 17.4 mg*h/L (range 11.8-32.0 mg*h/L) and 16.5 mg*h/L (range 11.0-23.8 mg*h/L) in the respective age groups.
These values are within the range reported for adults at therapeutic doses. Based on population pharmacokinetic analysis of paediatric patients with various infections, the predicted mean half-life in children is approx. 4-5 hours and the bioavailability of the oral suspension ranges from 50 to 80%.
5.3 Preclinical safety data
Non-clinical data reveal no special hazards for humans based on conventional studies of single dose toxicity, repeated dose toxicity, carcinogenic potential, or toxicity to reproduction.
Like a number of other quinolones, ciprofloxacin is phototoxic in animals at clinically relevant exposure levels. Data on photomutagenicity/ photocarcinogenicity show a weak photomutagenic or phototumorigenic effect of ciprofloxacin in-vitro and in animal experiments. This effect was comparable to that of other gyrase inhibitors.
Articular tolerability:
As reported for other gyrase inhibitors, ciprofloxacin causes damage to the large weight-bearing joints in immature animals. The extent of the cartilage damage varies according to age, species and dose; the damage can be reduced by taking the weight off the joints. Studies with mature animals (rat, dog) revealed no evidence of cartilage lesions. In a study in young beagle dogs, ciprofloxacin caused severe articular changes at therapeutic doses after two weeks of treatment, which were still observed after 5 months.
6 PHARMACEUTICAL PARTICULARS
6.1 List of excipients
Sodium chloride Lactic acid Hydrochloric acid Water for Injection
6.2 Incompatibilities
Ciprofloxacin 2 mg/ml Solution for Infusion is incompatible with injection solutions (e.g. penicillins, heparin solutions), which are chemically or physically unstable at its pH of 3.9-4.3. Unless compatibility is proven, the infusion should always be administered separately. For compatible co-infusion solutions see Section 6.6.
6.3 Shelf life
2 years
Chemical and physical in-use stability established in infusion fluids such as sodium chloride 0.9%, Ringer’s solution, glucose 5% and 10% and Hartmann’s has been demonstrated for up to 24 hours at 25°C.
6.4 Special precautions for storage
Do not refrigerate or freeze. Keep container in the outer carton in order to protect from light.
For storage conditions of the diluted medicinal product, see section 6.3.
6.5 Nature and contents of container
Colourless glass (Type II clear) infusion vials with a rubber stopper and aluminium overseal in a cardboard carton
Pack sizes: 50 ml, and100 ml.
6.6 Special precautions for disposal
Since the infusion solution is photosensitive, the vial should be removed from the box only immediately before use. In daylight conditions complete efficacy is guaranteed for a period of three days.
Any unused solution should be disposed off.
The product should not be mixed with other drug products which are chemically or physically unstable at its pH of 3.9-4.3 (see Section 6.2). However, Ciprofloxacin 2 mg/ml Solution for Infusion has been shown to be compatible with the following administration fluids;
Ringer's solution, 0.9%
Sodium chloride solution, 5% and 10%
Glucose solutions,
Glucose/saline and fructose 10% solution.
Unless compatibility is proven, the infusion solution should always be administered separately.
7
MARKETING AUTHORISATION HOLDER
Relonchem Limited,
27 Old Gloucester Street,
London WC1 3XX. tel: +44 (0)20 7419 5043 fax: +44 (0)20 7419 5024 e-mail: info@relonchem.com
8
9
MARKETING AUTHORISATION NUMBER(S)
PL20395/0047
DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION
23/02/2009
DATE OF REVISION OF THE TEXT
07/11/2012