Medine.co.uk

Clarithromycin 500mg/Vial Powder For Infusion

SUMMARY OF PRODUCT CHARACTERISTICS

1 NAME OF THE MEDICINAL PRODUCT

Clarithromycin 500mg/vial Powder for Infusion

2 QUALITATIVE AND QUANTITATIVE COMPOSITION

Clarithromycin 500mg/vial. Each vial contains 500mg clarithromycin.

When reconstituted the solution strength is 2mg/ml.

For the full list of excipients, see section 6.1

3    PHARMACEUTICAL FORM

Lyophilised powder for reconstitution to give a solution for IV administration.

The description of the product is a white crystalline powder. The appearance of the product after reconstitution is a clear solution.

4    CLINICAL PARTICULARS

4.1    Therapeutic indications

Consideration should be given to official guidance on the appropriate use of anti-bacterial agents.

Clarithromycin is indicated in adults and children 12 years and over.

Clarithromycin 500mg/vial Powder for Infusion is indicated whenever parenteral therapy is required for treatment of infections caused by susceptible organisms in the following conditions:

•    Lower respiratory tract infections for example, acute and chronic bronchitis, and pneumonia.

•    Upper respiratory tract infections for example, sinusitis and pharyngitis.

•    Skin and soft tissue infections.

4.2 Posology and method of administration

Posology

For intravenous administration only.

Intravenous therapy may be given for 2 to 5 days and should be changed to oral clarithromycin therapy when appropriate.

Adults: The recommended dosage of Clarithromycin 500mg/vial Powder for Infusion is 1.0 gram daily, divided into two 500mg doses, appropriately diluted as described below.

Children younger than 12 years: Use of Clarithromycin IV is not recommended for children younger than 12 years.

Special populations

Paediatric population:

Clinical trials have been conducted using clarithromycin pediatric suspension in children 6 months to 12 years of age. Therefore, children under 12 years of age should use clarithromycin pediatric suspension (granules for oral suspension). There are insufficient data to recommend a dosage regimen for use of the clarithromycin IV formulation in patients less than 18 years of age.

Children older than 12years: As for adults.

Elderly: As for adults.

Patients with renal impairment

In patients with renal impairment with creatinine clearance less than 30 mL/min, the dosage of clarithromycin should be reduced by one-half, i.e. 250 mg once daily, or 250 mg twice daily in more severe infections. Treatment should not be continued beyond 14 days in these patients.

Recommended administration:

Clarithromycin 500mg/vial Powder for Infusion should be administered into one of the larger proximal veins as an IV infusion over 60 minutes, using a solution concentration of about 2mg/ml. Clarithromycin should not be given as a bolus or an intramuscular injection.

The method of dilution is:

Step 1: Reconstitute with 10 ml Water for Injection.

Step 2: Dilute solution from Step 1 to 250 ml with recommended diluents to form a solution of approximately 2mg/ml.

The recommended diluents are:

0.9% sodium chloride solution or 5.0% glucose solutions or Ringer lactate solution. The appearance of the product after reconstitution is a clear solution.

Both dilution steps must be followed before administration.

4.3 Contraindications

Clarithromycin 500mg/vial Powder for Infusion is contra-indicated in patients with known hypersensitivity to clarithromycin, to any other macrolide antibiotic drugs or any of Clarithromycin 500mg/vial Powder for Infusion excipients listed in section 6.1.

Concomitant administration of clarithromycin and any of the following drugs is contraindicated: astemizole, cisapride, pimozide and terfenadine as this may result in QT prolongation and cardiac arrhythmias including ventricular tachycardia, ventricular fibrillation and Torsade de Pointes (see section 4.5). Similar effects have been observed with concomitant administration of other macrolides. Concomitant administration    of clarithromycin and ergotamine or    dihydroergotamine is

contraindicated, as this may result in ergot toxicity.

Concomitant administration with ticagrelor or ranolazine is contraindicated

Clarithromycin should not be given to patients with history of QT prolongation (congential or    documented    acquired    QT prolongation)    or ventricular cardiac

arrhythmia, including torsades de pointe (see sections 4.4 and 4.5).

Clarithromycin    should not    be used    concomitantly with HMG-CoA reductase

inhibitors (statins) that are extensively metabolized by CYP3A4 (lovastatin or simvastatin) due to the increased risk of myopathy, including rhabdomyolysis. (see section 4.5).

Clarithromycin    should not    be given    to patients with    hypokalaemia (risk of

prolongation of QT-time)

Clarithromycin should not be used in patients who suffer from severe hepatic failure in combination with renal impairment.

As with other strong CYP3A4 inhibitors, clarithromycin should not be used in patients taking colchicines.

4.4 Special warnings and precautions for use

The physician should not prescribe clarithromycin to pregnant women without carefully weighing the benefits against risk; particularly during the first three months of pregnancy (see section 4.6).

Caution is advised in patients with severe renal insufficiency (see section 4.2).

Clarithromycin is principally excreted by the liver and kidney. Therefore, caution should be exercised in administering the antibiotic to patients with impaired hepatic function. Caution should also be exercised when administering clarithromycin to patients with moderate to severe renal impairment.

Cases of fatal hepatic failure (see section 4.8) have been reported. Some patients may have had pre-existing hepatic disease or may have been taking other hepatotoxic medicinal products. Patients should be advised to stop treatment and contact their doctor if signs and symptoms of hepatic disease develop, such as anorexia, jaundice, dark urine, pruritus, or tender abdomen.

Pseudomembranous colitis has been reported with nearly all antibacterial agents, including macrolides, and may range in severity from mild to life-threatening. Clostridium difficile-associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents including clarithromycin, and may range in severity from mild diarrhoea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon, which may lead to overgrowth of C. difficile. CDAD must be considered in all patients who present with diarrhoea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents. Therefore, discontinuation of clarithromycin therapy should be considered regardless of the indication. Microbial testing should be performed and adequate treatment initiated. Drugs inhibiting peristalsis should be avoided.

Exacerbation of symptoms of myasthenia gravis has been reported in patients receiving clarithromycin therapy.

There have been post-marketing reports of colchicine toxicity with concomitant use of clarithromycin and colchicine, especially in the elderly, some of which occurred in patients with renal insufficiency. Deaths have been reported in some such patients (see Section 4.5).Concomitant administration of colchicine and clarithromycin is contraindicated (see section 4.3).

Caution is advised regarding concomitant administration of clarithromycin and triazolobenzodiazepines, such as triazolam, and midazolam (see section 4.5).

Caution is advised regarding concomitant administration of clarithromycin with other ototoxic drugs, especially with aminoglycosides. Monitoring of vestibular and auditory function should be carried out during and after treatment

Prolongation of the QT Interval

Prolonged cardiac repolarisation and QT interval, imparting a risk of developing cardiac arrhythmia and torsade de pointes, have been seen in treatment with macrolides including clarithromycin (see section 4.8). Therefore as the following situations may lead to an increased risk for ventricular arrhythmias (including torsade de pointes), clarithromycin should be used with caution in the following patients;

•    patients with coronary artery disease, severe cardiac insufficiency, conduction disturbances or clinically relevant bradycardia

•    patients with electrolyte disturbances such as hypomagnesaemia. Clarithromycin must not be given to patients with hypokalaemia (see section 4.3)

•    patients concomitantly taking other medicinal products associated with QT prolongation (see section 4.5)

•    concomitant administration of clarithromycin with astemizole, cisapride, pimozide and terfendine is contraindicated (see section 4.3)

•    clarithromycin must not be used in patients with congenital or documented acquired QT prolongation or history of ventricular arrhythmia (see section 4.3).

Pneumonia: In view of the emerging resistance of Streptococcus pneumoniae to macrolides, it is important that sensitivity testing be performed when prescribing clarithromycin for community-acquired pneumonia. In hospital-acquired pneumonia, clarithromycin should be used in combination with additional appropriate antibiotics.

Skin and soft tissue infections of mild to moderate severity: These infections are most often caused by Staphylococcus aureus and Streptococcus pyogenes, both of which may be resistant to macrolides. Therefore, it is important that sensitivity testing be performed. In cases where beta-lactam antibiotics cannot be used (e.g. allergy), other antibiotics, such as clindamycin, may be the drug of first choice. Currently, macrolides are only considered to play a role in some skin and soft tissue infections, such as those caused by Corynebacterium minutissimum (erythrasma), acne vulgaris, and erysipelas and in situations where penicillin treatment cannot be used.

In the event of severe acute hypersensitivity reactions, such as anaphylaxis, Stevens - Johnson syndrome, and toxic epidermal necrolysis, clarithromycin therapy should be discontinued immediately and appropriate treatment should be urgently initiated.

Clarithromycin should be used with caution when administered concurrently with medications that induce the cytochrome CYP3A4 enzyme (see section 4.5).

HMG-CoA reductase inhibitors (statins)

Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated (see section 4.3). Caution should be exercised when prescribing clarithromycin with other statin. Rhabdomyolysis has been reported in patients taking clarithromycin and statins. Patients should be monitored for signs and symptoms of myopathy. In situations where the concomitant use of clarithromycin with statins cannot be avoided, it is recommended to prescribe the lowest registered dose of the statin. Use of a statin that is not dependent on CYP3A metabolism (e.g fluvastatin) can be considered (see section 4.5)

Oral hypoglycaemic agents/Insulin: The concomitant use of clarithromycin and oral hypoglycaemic agents (such as sulphonylurias) and/or insulin can result in significant hypoglycaemia. Careful monitoring of glucose is recommended (see section 4.5)

Oral anticoagulants: There is a risk of serious haemorrhage and significant elevations in International Normalized Ratio (INR) and prothrombin time when clarithromycin is co-administered with warfarin (see section 4.5). INR and prothrombin times should be frequently monitored while patients are receiving clarithromycin and oral anticoagulants concurrently.

Use of any antimicrobial therapy, such as clarithromycin, to treat H. pylori infection may select for drug-resistant organisms.

Long-term use may, as with other antibiotics, result in colonization with increased numbers of non-susceptible bacteria and fungi. If superinfections occur, appropriate therapy should be instituted.

Attention should also be paid to the possibility of cross resistance between clarithromycin and other macrolide drugs, as well as lincomycin and clindamycin.

4.5 Interaction with other medicinal products and other forms of interaction

The use of the following drugs is strictly contraindicated due to the potential for severe drug interaction effects:

Cisapride, pimozide, astemizole and terfenadine

Elevated cisapride levels have been reported in patients receiving clarithromycin and cisapride concomitantly. This may result in QT prolongation and cardiac arrhythmias including ventricular tachycardia, ventricular fibrillation and torsade de pointes. Similar effects have been observed in patients taking clarithromycin and pimozide concomitantly (see section 4.3).

Macrolides have been reported to alter the metabolism of terfenadine resulting in increased levels of terfenadine which has occasionally been associated with cardiac arrhythmias such as QT prolongation, ventricular tachycardia, ventricular fibrillation and torsade de pointes (see section 4.3). In one study in 14 healthy volunteers, the concomitant administration of clarithromycin and terfenadine resulted in a two to three fold increase in the serum level of the acid metabolite of terfenadine and in prolongation of the QT interval which did not lead to any clinically detectable effect. Similar effects have been observed with concomitant administration of astemizole and other macrolides.

Ergotamine/dihydroergotamine

Post marketing reports indicate that co-administration of clarithromycin with ergotamine or dihydroergotamine has been associated with acute ergot toxicity characterized by vasospasm, and ischemia of the extremities and other tissues including the central nervous system. Concomitant administration of clarithromycin and these medicinal products is contraindicated (see section 4.3)

_HMG-CoA reductase inhibitors_(statins)

Concomitant use of clarithromycin with lovastatin or simvastatin is contraindicated (see section 4.3) as these statins are extensively metabolized by CYP3A4 and concomitant treatment with clarithromycin increases their plasma concentration, which increases the risk of myopathy, including rhabdomyolysis. Reports of rhabdomyolysis have been received for patients taking clarithromycin concomitantly with these statins. If treatment with clarithromycin cannot be avoided, therapy with lovastatin or simvastatin must be suspended during the course of treatment.

Caution should be exercised when prescribing clarithromycin with statins. In situations where the concomitant use of clarithromycin with statins cannot be avoided, it is recommended to prescribe the lowest registered dose of the statin. Use of a statin that is not dependent on CYP3A metabolism (e.g.fluvastatin) can be considered. Patients should be monitored for signs and symptoms of myopathy.

Effects of other medicinal products on clarithromycin

Drugs that are inducers of CYP3A (e.g. rifampicin, phenytoin, carbamazepine, phenobarbital, St John’s wort) may induce the metabolism of clarithromycin. This may result in sub-therapeutic levels of clarithromycin leading to reduced efficacy. Furthermore, it might be necessary to monitor the plasma levels of the CYP3A inducer, which could be increased owing to the inhibition of CYP3A by clarithromycin (see also the relevant product information for the CYP3A4 inhibitor administered). Concomitant administration of rifabutin and clarithromycin resulted in an increase in rifabutin, and decrease in clarithromycin serum levels together with an increased risk of uveitis.

The following drugs are known or suspected to affect circulating concentrations of clarithromycin; clarithromycin dosage adjustment or consideration of alternative treatments may be required.

Efavirenz, nevirapine, rifampicin, rifabutin and rifapentine

Strong inducers of the cytochrome P450 metabolism system such as efavirenz, nevirapine, rifampicin, rifabutin, and rifapentine may accelerate the metabolism of clarithromycin and thus lower the plasma levels of clarithromycin, while increasing those of 14-OH-clarithromycin, a metabolite that is also microbiologically active. Since the microbiological activities of clarithromycin and 14-OH-clarithromycin are different for different bacteria, the intended therapeutic effect could be impaired during concomitant administration of clarithromycin and enzyme inducers.

Etravirine

Clarithromycin exposure was decreased by etravirine; however, concentrations of the active metabolite, 14-OH-clarithromycin, were increased. Because 14-OH-clarithromycin has reduced activity against Mycobacterium avium complex (MAC), overall activity against this pathogen may be altered; therefore alternatives to clarithromycin should be considered for the treatment of MAC.

Fluconazole

Concomitant administration of fluconazole 200 mg daily and clarithromycin 500 mg twice daily to 21 healthy volunteers led to increases in the mean steady-state minimum clarithromycin concentration (Cmin) and area under the curve (AUC) of 33% and 18% respectively. Steady state concentrations of the active metabolite 14-OH-clarithromycin were not significantly affected by concomitant administration of fluconazole. No clarithromycin dose adjustment is necessary.

Ritonavir

A pharmacokinetic study demonstrated that the concomitant administration of ritonavir 200 mg every eight hours and clarithromycin 500 mg every 12 hours resulted in a marked inhibition of the metabolism of clarithromycin. The clarithromycin Cmax increased by 31%, Cmin increased 182% and AUC increased by 77% with concomitant administration of ritonavir. An essentially complete inhibition of the formation of 14-OH-clarithromycin was noted. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. However, for patients with renal impairment, the following dosage adjustments should be considered: For patients with CLcr 30 to 60 mL/min the dose of clarithromycin should be reduced by 50%. For patients with CLcr <30 mL/min the dose of clarithromycin should be decreased by 75%. Doses of clarithromycin greater than 1 gm/day should not be coadministered with ritonavir.

Similar dose adjustments should be considered in patients with reduced renal function when ritonavir is used as a pharmacokinetic enhancer with other HIV protease inhibitors including atazanavir and saquinavir (see section below, Bi-directional drug interactions)

Effect of clarithromycin on other medicinal products

CYP3A-based interactions

Co-administration of clarithromycin, known to inhibit CYP3A, and a drug primarily metabolized by CYP3A may be associated with elevations in drug concentrations that could increase or prolong both therapeutic and adverse effects of the concomitant drug. Clarithromycin should be used with caution in patients receiving treatment with other drugs known to be CYP3A enzyme substrates, especially if the CYP3A substrate has a narrow safety margin (e.g. carbamazepine) and/or the substrate is extensively metabolized by this enzyme.

Dosage adjustments may be considered, and when possible, serum concentrations of drugs primarily metabolized by CYP3A should be monitored closely in patients concurrently receiving clarithromycin.

The following drugs or drug classes are known or suspected to be metabolized by the same CYP3A isozyme: alprazolam, astemizole, carbamazepine, cilostazol, cisapride, cyclosporine, disopyramide, ergot alkaloids, lovastatin, methylprednisolone, midazolam, omeprazole, oral anticoagulants (e.g. warfarin, see section 4.4), atypical antipsychotics (e.g. quetiapine),_pimozide, quinidine, rifabutin, sildenafil, simvastatin, sirolimus, tacrolimus, terfenadine, triazolam and vinblastine, but this list is not comprehensive. Drugs interacting by similar mechanisms through other isozymes within the cytochrome P450 system include phenytoin, theophylline and valproate.

Antiarrhythmics

There have been post marketing reports of torsades de pointes occurring with concurrent use of clarithromycin and quinidine or disopyramide. Electrocardiograms should be monitored for QT prolongation during co-administration of clarithromycin with these drugs. Serum levels of quinidine and disopyramide should be monitored during clarithromycin therapy.

There have been post marketing reports of hypoglycaemia with the concomitant administration of clarithromycin and disopyramide. Therefore blood glucose levels should be monitored during concomitant administration of clarithromycin and disopyramide.

Oral hypoglycaemic agents/Insulin

With certain hypoglycaemic drugs such as nateglinide, and repaglinide, inhibition of CYP3A enzyme by clarithromycin may be involved and could cause hypolgycaemia when used concomitantly. Careful monitoring of glucose is recommended.

Omeprazole

Clarithromycin (500 mg every 8 hours) was given in combination with omeprazole (40 mg daily) to healthy adult subjects. The steady-state plasma concentrations of omeprazole were increased (Cmax, AUC0-24, and ti/2 increased by 30%, 89%, and 34%, respectively), by the concomitant administration of clarithromycin. The mean 24-hour gastric pH value was 5.2 when omeprazole was administered alone and 5.7 when omeprazole was co-administered with clarithromycin.

Sildenafil, tadalafil, and vardenafil

Each of these phosphodiesterase inhibitors is metabolized, at least in part, by CYP3A, and CYP3A may be inhibited by concomitantly administered clarithromycin. Coadministration of clarithromycin with sildenafil, tadalafil or vardenafil would likely result in increased phosphodiesterase inhibitor exposure. Reduction of sildenafil,

tadalafil and vardenafil dosages should be considered when these drugs are coadministered with clarithromycin.

Theophylline, carbamazepine

Results of clinical studies indicate there was a modest but statistically significant (p < 0.05) increase of circulating theophylline or carbamazepine levels when either of these drugs were administered concomitantly with clarithromycin. Dose reduction may need to be considered. Clarithromycin may potentiate the effects of carbamazepine due to a reduction in the rate of excretion.

Tolterodine

The primary route of metabolism for tolterodine is via the 2D6 isoform of cytochrome P450 (CYP2D6). However, in a subset of the population devoid of CYP2D6, the identified pathway of metabolism is via CYP3A. In this population subset, inhibition of CYP3A results in significantly higher serum concentrations of tolterodine. A reduction in tolterodine dosage may be necessary in the presence of CYP3A inhibitors, such as clarithromycin in the CYP2D6 poor metabolizer population.

Triazolobenzodiazepines (e.g. alprazolam, midazolam, triazolam)

When midazolam was co-administered with clarithromycin tablets (500 mg twice daily), midazolam AUC was increased 2.7-fold after intravenous administration of midazolam and 7-fold after oral administration. Concomitant administration of oral midazolam and clarithromycin should be avoided. If intravenous midazolam is coadministered with clarithromycin, the patient must be closely monitored to allow dose adjustment. The same precautions should also apply to other benzodiazepines that are metabolized by CYP3A, including triazolam and alprazolam. For benzodiazepines which are not dependent on CYP3A for their elimination (temazepam, nitrazepam, lorazepam), a clinically important interaction with clarithromycin is unlikely.

There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g. somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested.

Other drug interactions

Aminoglycosides

Caution is advised regarding concomitant administration of clarithromycin with other ototoxic drugs, especially with aminoglycosides (see section 4.4).

Colchicine

Colchicine is a substrate for both CYP3A and the efflux transporter, P-glycoprotein (Pgp). Clarithromycin and other macrolides are known to inhibit CYP3A and Pgp. When clarithromycin and colchicine are administered together, inhibition of Pgp and/or CYP3A by clarithromycin may lead to increased exposure to colchicine. (see section 4.3 and 4.4).

Digoxin

Digoxin is thought to be a substrate for the efflux transporter, P-glycoprotein (Pgp). Clarithromycin is known to inhibit Pgp. When clarithromycin and digoxin are administered together, inhibition of Pgp by clarithromycin may lead to increased exposure to digoxin. Elevated digoxin serum concentrations in patients receiving clarithromycin and digoxin concomitantly have also been reported in post marketing surveillance. Some patients have shown clinical signs consistent with digoxin toxicity, including potentially fatal arrhythmias. Serum digoxin concentrations should be carefully monitored while patients are receiving digoxin and clarithromycin simultaneously.

Zidovudine

Simultaneous oral administration of clarithromycin tablets and zidovudine to HIV-infected adult patients may result in decreased steady-state zidovudine concentrations. Because clarithromycin appears to interfere with the absorption of simultaneously administered oral zidovudine, this interaction can be largely avoided by staggering the doses of clarithromycin and zidovudine to allow for a 4-hour interval between each medication. This interaction does not appear to occur in pediatric HIV-infected patients taking clarithromycin suspension with zidovudine or dideoxyinosine. This interaction is unlikely when clarithromycin is administered via intravenous infusion.

Phenytoin and Valproate

There have been spontaneous or published reports of interactions of CYP3A inhibitors, including clarithromycin with drugs not thought to be metabolized by CYP3A (e.g. phenytoin and valproate). Serum level determinations are recommended for these drugs when administered concomitantly with clarithromycin. Increased serum levels have been reported

Bi-directional drug interactions

Atazanavir

Both clarithromycin and atazanavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Co-administration of clarithromycin (500 mg twice daily) with atazanavir (400 mg once daily) resulted in a 2-fold increase in exposure to clarithromycin and a 70% decrease in exposure to 14-OH-clarithromycin, with a 28% increase in the AUC of atazanavir. Because of the large therapeutic window for clarithromycin, no dosage reduction should be necessary in patients with normal renal function. For patients with moderate renal function (creatinine clearance 30 to 60 mL/min), the dose of clarithromycin should be decreased by 50%. For patients with creatinine clearance <30 mL/min, the dose of clarithromycin should be decreased by 75% using an appropriate clarithromycin formulation. Doses of clarithromycin greater than 1000 mg per day should not be coadministered with protease inhibitors.

Calcium channel blockers

Caution is advised regarding the concomitant administration of clarithromycin and calcium channel blockers metabolized by CYP3A4 (e.g., verapamil, amlodipine, diltiazem) due to the risk of hypotension. Plasma concentrations of clarithromycin as well as calcium channel blockers may increase due to the interaction. Hypotension, bradyarrhythmias and lactic acidosis have been observed in patients taking clarithromycin and verapamil concomitantly.

Itraconazole

Both clarithromycin and itraconazole are substrates and inhibitors of CYP3A, leading to a bidirectional drug interaction. Clarithromycin may increase the plasma levels of itraconazole, while itraconazole may increase the plasma levels of clarithromycin. Patients taking itraconazole and clarithromycin concomitantly should be monitored closely for signs or symptoms of increased or prolonged pharmacologic effect.

Saquinavir

Both clarithromycin and saquinavir are substrates and inhibitors of CYP3A, and there is evidence of a bi-directional drug interaction. Concomitant administration of clarithromycin (500 mg twice daily) and saquinavir (soft gelatin capsules, 1200 mg three times daily) to 12 healthy volunteers resulted in steady-state AUC and Cmax values of saquinavir which were 177% and 187% higher than those seen with saquinavir alone. Clarithromycin AUC and Cmax values were approximately 40% higher than those seen with clarithromycin alone. No dose adjustment is required when the two drugs are co-administered for a limited time at the doses/formulations studied. Observations from drug interaction studies using the soft gelatin capsule formulation may not be representative of the effects seen using the saquinavir hard gelatin capsule. Observations from drug interaction studies performed with saquinavir alone may not be representative of the effects seen with saquinavir/ritonavir therapy. When saquinavir is co-administered with ritonavir, consideration should be given to the potential effects of ritonavir on clarithromycin.

Oral contraceptives

Clarithromycin has been shown not to interact with oral contraceptives.

Warfarin

The use of Clarithromycin in patients receiving warfarin may result in a potentiation of the effects of warfarin. Prothrombin time should be frequently monitored in these patients.

4.6 Fertility, pregnancy and lactation

Pregnancy

The safety of Clarithromycin for use during pregnancy has not been established Based on variable results obtained from studies in mice, rats, rabbits and monkeys, the possibility of adverse effects on embryo foetal development cannot be excluded. Therefore, use during pregnancy is not advised without carefully weighing the benefits against risk.

Breastfeeding

The safety of Clarithromycin for use during pregnancy has not been established. Clarithromycin is excreted into human breast milk.

4.7 Effects on ability to drive and use machines

There are no data on the effect of clarithromycin on the ability to drive or use machines. The potential for dizziness, vertigo, confusion and disorientation, which may occur with the medication, should be taken into account before patients drive or use machines.

4.8 Undesirable effects

a.    Summary of the safety profile

The most frequent and common adverse reactions related to clarithromycin therapy for both adult and pediatric populations are abdominal pain, diarrhoea, nausea, vomiting and taste perversion. These adverse reactions are usually mild in intensity and are consistent with the known safety profile of macrolide antibiotics. (see section b of section 4.8)

There was no significant difference in the incidence of these gastrointestinal adverse reactions during clinical trials between the patient population with or without preexisting mycobacterial infections.

b.    Tabulated summary of adverse reactions

The following table displays adverse reactions reported in clinical trials and from post-marketing experience with clarithromycin powder for solution for injection.

The reactions considered at least possibly related to clarithromycin are displayed by system organ class and frequency using the following convention: very common (>1/10), common (> 1/100 to < 1/10), uncommon (>1/1,000 to < 1/100) and not known (adverse reactions from post-marketing experience; cannot be estimated from the available data). Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness when the seriousness could be assessed.

System Organ Class

Very

common

>1/10

Common > 1/100 to < 1/10

Uncommon >1/1,000 to < 1/100

Not Known (cannot be estimated from the available data)

Infections and infestations

Cellulitis1, candidiasis, vaginal infection

Pseudomembranous colitis, erysipelas, erythrasma, oral monilia

Blood and

lymphatic

system

Leukopenia

Agranulocytosis,

thrombocytopenia

Immune system disorders5

Anaphylactoid

reaction,

hypersensitivity

Anaphylactic

reaction,

angioedema

Metabolism and nutrition disorders

Anorexia, decreased appetite

Hypoglycaemia6

Psychiatric

disorders

Insomnia

Anxiety

Psychotic disorder, confusional state, depersonalisation, depression, disorientation, hallucination, abnormal dreams, mania

Nervous

Dysgeusia,

Loss of

Convulsion, ageusia,

system

disorders

headache, taste perversion

consciousness1,

dyskinesia1,

dizziness,

somnolence6,

tremor

parosmia, anosmia, paraesthesia

Ear and

labyrinth

disorders

Vertigo, hearing impaired, tinnitus

Deafness

Cardiac

disorders

Cardiac arrest1, atrial fibrillation1, electrocardiogram QT prolonged7, extrasystoles1, palpitations

Torsade de pointes7,

ventricular

tachycardia7,

ventricular

fibrillation

Vascular

disorders

Vasodilation1

Haemorrhage8

Respiratory, thoracic and mediastinal disorder

Asthma1,

pulmonary

embolism1

Gastrointestinal

disorders

Diarrhoea9

vomiting,

dyspepsia,

nausea,

abdominal pain

Esophagitis1, stomatitis, gastritis, stomatitis glossitis, constipation, dry mouth, eructation, flatulence

Pancreatitis acute, tongue

discolouration, tooth discoloration

Hepatobiliary

disorders

Liver function test abnormal

alanine

aminotransferase increased, aspartate aminotransferase increased

Hepatic failure10,

jaundice

hepatocellular

Skin and subcutaneous tissue disorders

Rash,

hyperhidrosis

Dermatitis bullous1, pruritus, urticaria, rash

Stevens-Johnson syndrome5, toxic epidermal

necrolysis5, drug rash with eosinophilia and systemic symptoms (DRESS), acne

Musculoskele tal and connective tissue disorders

musculoskeletal

stiffness1

Rhabdomyolysis11 ,m yopathy, arthralgia

Renal and

urinary

disorders

Blood creatinine increased1, blood urea increased1

Renal failure, nephritis interstitial

General

Disorders

and

administration

site

conditions

Injection

site

phlebitis1

Injection site pain1, injection site

inflammation1

asthenia

Investigations

Albumin globulin ratio abnormal1

International normalised ratio increased8, prothrombin time prolonged8, urine color abnormal

i ADRs reported only for the Powder for Solution for Injection formu

ation

2,3,4,

' See section a)

5,6,7,8,9,10,11 See section c)

c. Description of selected adverse reactions

Injection site phlebitis, injection site pain, vessel puncture site pain, and injection site inflammation are specific to the clarithromycin intravenous formulation.

In very rare instances, hepatic failure with fatal outcome has been reported and generally has been associated with serious underlying diseases and/or concomitant medications (see section 4.4).

A special attention to diarrhoea should be paid as Clostridium difficile -associated diarrhoea (CDAD) has been reported with use of nearly all antibacterial agents including clarithromycin, and may range in severity from mild diarrhoea to fatal colitis. (see section 4.4)

In the event of severe acute hypersensitivity reactions, such as anaphylaxis, Stevens - Johnson syndrome and toxic epidermal necrolysis, clarithromycin therapy should be discontinued immediately and appropriate treatment should be urgently initiated (see section 4.4).

As with other macrolides, QT prolongation, ventricular tachycardia, and torsade de pointes have rarely been reported with clarithromycin (see section 4.4 and 4.5).

Pseudo membranous colitis has been reported with nearly all antibacterial agents, including clarithromycin, and may range in severity from mild to life threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhoea subsequent to the administration of antibacterial agents (see section 4.4).

In some of the reports of rhabdomyolysis, clarithromycin was administered concomitantly with statins, fibrates, colchicine or allopurinol (see section 4.3 and 4.4).

There have been post-marketing reports of colchicine toxicity with concomitant use of clarithromycin and colchicine, especially in elderly and/or patients with renal insufficiency, some with a fatal outcome. (see sections 4.4 and 4.5).

There have been rare reports of hypoglycemia, some of which have occurred in patients on concomitant oral hypoglycemic agents or insulin (see section 4.4 and 4.5).

There have been post-marketing reports of drug interactions and central nervous system (CNS) effects (e.g. somnolence and confusion) with the concomitant use of clarithromycin and triazolam. Monitoring the patient for increased CNS pharmacological effects is suggested (see section 4.5).

There is a risk of serious haemorrhage and significant elevations in INR and prothrombin time when clarithromycin is co-administered with warfarin. INR and prothrombin times should be frequently monitored while patients are receiving clarithromycin and oral anticoagulants concurrently (see section 4.4 and 4.5).

Special population: Adverse Reactions in Immuno-compromised Patients (see section e)

d. Pediatric populations

Clinical trials have been conducted using clarithromycin pediatric suspension in children 6 months to 12 years of age. Therefore, children under 12 years of age should use clarithromycin pediatric suspension. There are insufficient data to recommend a dosage regimen for use of the clarithromycin IV formulation in patients less than 18 years of age.

Frequency, type and severity of adverse reactions in children are expected to be the same as in adults.

e. Other special populations

Immuno-compromised patients

In AIDS and other immuno-compromised patients treated with the higher doses of clarithromycin over long periods of time for mycobacterial infections, it was often difficult to distinguish adverse events possibly associated with clarithromycin administration from underlying signs of Human Immunodeficiency Virus (HIV) disease or inter current illness.

In adult patients, the most frequently reported adverse reactions by patients treated with total daily doses of 1000 mg and 2000 mg of clarithromycin were: nausea, vomiting, taste perversion, abdominal pain, diarrhoea, rash, flatulence, headache, constipation, hearing disturbance, Serum Glutamic Oxaloacetic Transaminase (SGOT) and Serum Glutamic Pyruvate Transaminase (SGPT) elevations. Additional low-frequency events included dyspnoea, insomnia and dry mouth. The incidences were comparable for patients treated with 1000 mg and 2000 mg, but were generally about 3 to 4 times as frequent for those patients who received total daily doses of 4000 mg of clarithromycin.

In these immunocompromised patients, evaluations of laboratory values were made by analysing those values outside the seriously abnormal level (i.e. the extreme high or low limit) for the specified test. On the basis of these criteria, about 2% to 3% of

those patients who received 1000 mg or 2000 mg of clarithromycin daily had seriously abnormal elevated levels of SGOT and SGPT, and abnormally low white blood cell and platelet counts. A lower percentage of patients in these two dosage groups also had elevated Blood Urea Nitrogen levels. Slightly higher incidences of abnormal values were noted for patients who received 4000 mg daily for all parameters except White Blood Cell.

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at: www.mhra.gov.uk/yellowcard.

4.9 Overdose

There is no experience of overdosage after IV administration of clarithromycin. However, reports indicate that the ingestion of large amounts of clarithromycin orally can be expected to produce gastro-intestinal symptoms. One patient who had a history of bipolar disorder ingested 8 grams of clarithromycin and showed altered mental status, paranoid behaviour, hypokalaemia and hypoxaemia.

Adverse reactions accompanying overdosage should be treated by the prompt elimination of unabsorbed drug and supportive measures. As with other macrolides, clarithromycin serum levels are not expected to be appreciably affected by haemodialysis or peritoneal dialysis.

In the case of overdosage, clarithromycin IV (powder for solution for injection) should be discontinued and all other appropriate supportive measures should be instituted.

5    PHARMACOLOGICAL PROPERTIES

5.1    Pharmacodynamic properties

ATC Code: J01FA09

General properties

Mode of action

Clarithromycin is a semi-synthetic derivative of erythromycin A. It exerts its antibacterial action by binding to the 50s ribosomal sub-unit of susceptible bacteria and suppressing protein synthesis. It is highly potent against a wide variety of aerobic and anaerobic gram-positive and gram-negative organisms. The minimum inhibitory concentrations (MICs) of clarithromycin are generally two-fold lower than the MICs of erythromycin.

The 14-(R)-hydroxy metabolite of clarithromycin, formed in man by first pass metabolism, also has antimicrobial activity. The MICs of this metabolite are equal or two-fold higher than the MICs of the parent compound except for H. influenzae where the 14-hydroxy metabolite is two-fold more active than the parent compound.

Clarithromycin 500 mg/vial Powder for Solution for Infusion is usually active against the following organisms in vitro:

Gram-positive Bacteria: Staphylococcus aureus (methicillin susceptible); Streptococcus pyogenes (Group A beta-haemolytic streptococci); alpha-haemolytic streptococcus (viridans group); Streptococcus (Diplococcus) pneumoniae; Streptococcus agalactiae; Listeria monocytogenes.

Gram-negative Bacteria:    Haemophilus influenzae, Haemophilus

parainfluenzae, Moraxella (Branhamella) catarrhalis, Neisseria gonorrhoeae; Legionella pneumophila, Bordetella pertussis, Helicobacter pylori; Campylobacter jejuni.

Mycoplasma: Mycoplasma pneumoniae; Ureaplasma urealyticum.

Other Organisms: Chlamydia trachomatis; Mycobacterium avium; Mycobacterium leprae; Chlamydia pneumoniae.

Anaerobes:    Macrolide-susceptible Bacteriodes fragilis; Clostridium

perfringens; Peptococcus species; Peptostreptococcus species; Propionibacterium acnes.

Clarithromycin has bactericidal activity against several bacterial strains. These organisms include H. influenzae, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, Morazella (Brahamella) catarrhalis, Neisseria gonorrhoeae, Helicobacter pylori and Campylobacter spp.

The activity of clarithromycin against H. pylori is greater at neutral pH than at acid pH.

5.2 Pharmacokinetic properties

The microbiologically active metabolite 14-hydroxy clarithromycin is formed by first pass metabolism as indicated by lower bioavailability of the metabolite following IV administration. Following IV administration the blood levels of clarithromycin achieved are well in excess of the MIC90s for the common pathogens and the levels of 14 hydroxyclarithromycin exceed the necessary concentrations for important pathogens e.g. H.influenzae.

The pharmacokinetics of clarithromycin and the 14-hydroxy metabolite are non linear, steady-state is achieved by day 3 of IV dosing. Following a single 500mg IV dose over 60 minutes, about 33% clarithromycin and 11% 14 hydroxyclarithromycin is excreted in the urine at 24 hours.

Clarithromycin 500 mg/vial Powder for Solution for Infusion does not contain tartrazine or other azo dyes, lactose or gluten.

5.3 Preclinical safety data

There are no pre-clinical data of relevance to the prescriber which are additional to that already included in other sections of the SPC.

6 PHARMACEUTICAL PARTICULARS

6.1 List of excipients

Lactobionic acid

Sodium hydroxide

6.2 Incompatibilities

None known. However, Clarithromycin 500mg/vial Powder for Infusion should only be diluted with the diluents recommended.

6.3 Shelf life

24 months unopened. This medicinal product does not require any special storage conditions.

Chemical and physical in-use stability has been demonstrated for 8 hours at room temperature and 24 hours at 2 to 8°C. From a microbiological point of view, the product should be used immediately. If not used immediately, in-use storage times and conditions are the responsibility of the user and would not normally be longer than 24 hours at 2 to 8°C, unless reconstitution/dilution has taken place in controlled and validated aseptic conditions.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions.

6.5 Nature and contents of container

20ml vial (Glass Type I, Ph.Eur 3.2.1) with a cholorobutyl stopper with an aluminium and plastic flip-off cap. Vials are packed in units of 1, 4 and 6. Pack size 500mg.

6.6 Special precautions for disposal

Special precautions for handling

Clarithromycin 500mg/vial Powder for Infusion should be administered into one of the larger proximal veins as an IV infusion over 60 minutes, using a

solution concentration of about 2mg/ml. Clarithromycin should not be given as a bolus or an intramuscular injection.

The method of dilution is:

Step 1. Reconstitute with 10ml Water for Injection.

Step 2. Dilute solution from Step 1 to 250ml with recommended diluents to form a solution of approximately 2mg/ml.

The recommended diluents are:

0.9% sodium chloride solution or 5.0% glucose solutions or Ringer lactate solution

Both dilution steps must be followed before administration.

Special Precautions for disposal

For single use only. Any unused solution and the vial should be adequately disposed of, in accordance with local requirements.

7 MARKETING AUTHORISATION HOLDER

Teva UK Limited Brampton Road Hampden Park Eastbourne East Sussex BN22 9AG

8    MARKETING AUTHORISATION NUMBER(S)

PL 00289/1484

9    DATE OF FIRST AUTHORISATION/RENEWAL OF THE

AUTHORISATION 13/12/2007

10


DATE OF REVISION OF THE TEXT

08/02/2016