Medine.co.uk

Finasteride 5 Mg Film-Coated Tablets

Informations for option: Finasteride 5 Mg Film-Coated Tablets, show other option
Document: spc-doc_PL 20117-0016 change

SUMMARY OF PRODUCT CHARACTERISTICS

1 NAME OF THE MEDICINAL PRODUCT

Finasteride 5 mg Film-coated tablet

2    QUALITATIVE AND QUANTITATIVE COMPOSITION

Each film-coated tablet contains 5 mg of finasteride.

Excipient(s) with known effect:

Each tablet contains 106.4 mg of lactose.

For the full list of excipients, see section 6.1.

3    PHARMACEUTICAL FORM

Film-coated tablet.

Blue, round film-coated tablet.

4 CLINICAL PARTICULARS

4.1    Therapeutic indications

Finasteride is indicated for the treatment and control of benign prostatic hyperplasia (BPH) to:

-    cause regression of the enlarged prostate, improve urinary flow and improve the symptoms associated with BPH.

-    reduce the incidence of acute urinary retention and reduce need for surgery including transurethral resection of the prostate (TURP) and prostatectomy.

4.2    Posology and method of administration

Finasteride tablet is for oral use only.

Dosage in adults

The recommended dosage is one 5 mg tablet daily, with or without food. The tablet should be swallowed whole and must not be divided or crushed (see section 6.6).

Even though improvement can be seen within short time, treatment for at least 6 months may be necessary in order to determine objectively whether a satisfactory response to treatment has been achieved.

Finasteride can be administered alone or in combination with the alpha- blocker doxazosin (see 5.1).

Dosage in the elderly

Dosage adjustments are not necessary although pharmacokinetic studies have shown that the elimination rate of finasteride is slightly decreased in patients over the age of 70.

Dosage in hepatic impairment

There is no data available for the use of finasteride in patients with hepatic impairment (see section 4.4).

Dosage in renal insufficiency

Dosage adjustments are not necessary in patients with varying degrees of renal insufficiency (starting from creatinine clearance as low as 9ml/min), as in pharmacokinetic studies renal insufficiency was not found to affect the elimination of finasteride. Finasteride has not been studied in patients on haemodialysis.

Paediatric population This medicament should not be administered to children because there is no information available on the safety and effectiveness of finasteride in children.

4.3 Contraindications

Finasteride is not indicated for use in women or children.

Finasteride is contraindicated in the following:

• Hypersensitivity to the active substance(s) or to any of the excipients listed in section 6.1.

• Pregnancy - Use in women when they are or may potentially be pregnant (see 4.6 Pregnancy and lactation, Exposure to finasteride - risk to male fetus).

4.4 Special warnings and special precautions for use

General:

To avoid obstructive complications it is important that patients with large residual urine and/or heavily decreased urinary flow are carefully controlled. The possibility of surgery should be an option.

Effects on prostate-specific antigen (PSA) and prostate cancer detection No clinical benefit has yet been demonstrated in patients with prostate cancer treated with Finasteride. Patients with BPH and elevated serum Prostate Specific Antigen (PSA) were monitored in controlled clinical studies with serial PSAs and prostate biopsies. In these BPH studies, Finasteride did not appear to alter the rate of prostate cancer detection and the overall incidence of prostate cancer was not significantly different in patients treated with Finasteride or placebo.

Digital rectal examinations, as well as other evaluations for prostate cancer are recommended prior to initiating therapy with Finasteride and periodically thereafter. Serum PSA is also used for prostate cancer detection. Generally, a baseline PSA > 10ng/ml (Hybritech) prompts further evaluation and consideration of biopsy; for PSA levels between 4 and 10 ng/mL, further evaluation is advisable. There is considerable overlap in PSA levels among men with and without prostate cancer. Therefore, in men with BPH, PSA values within the normal reference range do not rule out prostate cancer, regardless of treatment with Finasteride. A baseline PSA <4 ng/mL does not exclude prostate cancer.

Finasteride causes a decrease in serum PSA concentrations by approximately 50% in patients with BPH, even in the presence of prostate cancer. This decrease in serum PSA levels in patients with BPH treated with Finasteride should be considered when evaluating PSA data and does not rule out concomitant prostate cancer. This decrease is predictable over the entire range of PSA values, although it may vary in individual patients. Analysis of PSA data from over 3000 patients in the 4-year, double-blind, placebo-controlled Finasteride Long-Term Efficacy and Safety Study confirmed that in typical patients treated with Finasteride for six months or more, PSA values should be doubled for comparison with normal ranges in untreated men. This adjustment preserves the sensitivity and specificity of the PSA assay and maintains its ability to detect prostate cancer.

Any sustained increase in PSA levels of patients treated with finasteride should be carefully evaluated, including consideration of non-compliance to therapy with Finasteride.

Percent free PSA (free to total PSA ratio) is not significantly decreased by Finasteride. The ratio of free to total PSA remains constant even under the influence of Finasteride. When percent free PSA is used as an aid in the detection of prostate cancer, no adjustment to its value is necessary.

Drug/laboratory test interactions

Effect on levels of PSA

Serum PSA concentration is correlated with patient age and prostatic volume, and prostatic volume is correlated with patient age. When PSA laboratory determinations are evaluated, consideration should be given to the fact that PSA levels decrease in patients treated with Finasteride. In most patients, a rapid decrease in PSA is seen within the first months of therapy, after which time PSA levels stabilize to a new baseline. The post-treatment baseline approximates half of the pre-treatment value. Therefore, in typical patients treated with Finasteride for six months or more, PSA values should be doubled for comparison to normal ranges in untreated men. For clinical interpretation, see 4.4 Special warnings and precautions for use, Effects on PSA and prostate cancer detection.

Breast cancer in men

Breast cancer has been reported in men taking finasteride 5 mg during clinical trials and the post-marketing period. Physicians should instruct their patients to promptly report any changes in their breast tissue such as lumps, pain, gynaecomastia or nipple discharge.

Paediatric use

Finasteride is not indicated for use in children.

Safety and effectiveness in children have not been established.

Lactose

The tablet contains lactose monohydrate. Patients with any of the following genetic deficiencies should not take this drug: galactose intolerance, total lactase deficiency or glucose-galactose malabsorption.

Hepatic insufficiency

The effect of hepatic insufficiency on the pharmacokinetics of finasteride has not been studied.

4.5 Interaction with other medicinal products and other forms of interaction

No drug interactions of clinical importance have been identified. Finasteride is metabolized primarily via, but does not affect significantly, the cytochrome P450 3A4 system. Although the risk for finasteride to affect the pharmacokinetics of other drugs is estimated to be small, it is probable that inhibitors and inducers of cytochrome P450 3A4 will affect the plasma concentration of finasteride. However, based on established safety margins, any increase due to concomitant use of such inhibitors is unlikely to be of clinical significance. Finasteride does not appear to affect significantly the cytochrome P450-linked drug metabolizing enzyme system.

Compounds which have been tested in man have included propranolol, digoxin, glyburide, warfarin, theophylline, and antipyrine, and no clinically meaningful interactions were found.

4.6 Fertility, pregnancy and lactation

Pregnancy:

Finasteride is contraindicated for use in woman when they are or may potentially be pregnant (See 4.3 Contraindications).

Because of the ability of type II 5a-reductase inhibitors to inhibit conversion of testosterone to dihydrotestosterone, these drugs, including finasteride, may cause abnormalities of the external genitalia of a male fetus when administered to a pregnant woman. (see section 6.6.)

Exposure to finasteride - risk to male fetus

Women should not handle crushed or broken tablets of finasteride when they are or may potentially be pregnant because of the possibility of absorption of finasteride and the subsequent potential risk to a male fetus (see 4.6 Pregnancy and lactation, Pregnancy).

Finasteride tablets are film-coated and will prevent contact with the active ingredient during normal handling, provided that the tablets have not been broken or crushed.

Small amounts of finasteride have been recovered from the semen in subjects receiving finasteride 5 mg/day. It is not known whether a male fetus may be adversely affected if his mother is exposed to the semen of a patient being treated with finasteride. When the patient’s sexual partner is or may potentially be pregnant, the patient is recommended to minimise exposure of his partner to semen.

Breastfeeding:

Finasteride is not indicated for use in women.

It is not known whether finasteride is excreted in human milk.

4.7 Effects on ability to drive and use machines

There are no data to suggest that Finasteride affects the ability to drive or use machines.

4.8 Undesirable effects

The most frequent adverse reactions are impotence and decreased libido. These adverse reactions occur early in the course of therapy and resolve with continued treatment in the majority of patients.

The adverse reactions reported during clinical trials and/or post-marketing use are listed in the table below.

Frequency of adverse reactions is determined as follows:

Very common (>1/10), Common (>1/100 to <1/10), Uncommon (>1/1,000 to <1/100), Rare (>1/10,000 to <1/1,000), Very rare (<1/10,000), not known (cannot be estimated from the available data).

The frequency of adverse reactions reported during post-marketing use cannot be determined as they are derived from spontaneous reports.

System Organ Class

Frequency: adverse reaction

Investigations

Common: decreased volume of ejaculate

Cardiac disorders

Unknown: palpitation

Skin and subcutaneous tissue disorders

Uncommon: rash Unknown: pruritus, urticaria

Immune system disorders

Unknown: hypersensitivity reactions including swelling of the lips and face

Hepatobiliary disorders

Unknown: increased hepatic enzymes

Reproductive system and breast disorders

Common: impotence Uncommon: ejaculation disorder, breast tenderness, breast enlargement Unknown: testicular pain

Psychiatric disorders

Common: decreased libido

In addition, the following has been reported in clinical trials and postmarketing use: male breast cancer (see 4.4 Special warnings and precautions for use).

Medical Therapy of Prostatic Symptoms (MTOPS)

The MTOPS study compared finasteride 5 mg/day (n=768), doxazosin 4 or 8 mg/day (n=756), combination therapy of finasteride 5 mg/day and doxazosin 4 or 8 mg/day (n=786), and placebo (n=737). In this study, the safety and tolerability profile of the combination therapy was generally consistent with the profiles of the individual components. The incidence of ejaculation disorder in patients receiving combination therapy was comparable to the sum of incidences this adverse experience for two monotherapies.

In a 7-year placebo-controlled trial that enrolled 18,882 healthy men, of whom 9060 had prostate needle biopsy data available for analysis, prostate cancer was detected in 803 (18.4%) men receiving finasteride and 1147 (24.4%) men receiving placebo. In the finasteride group, 280 (6.4%) men had prostate cancer with Gleason scores of 7-10 detected on needle biopsy vs. 237 (5.1%) men in the placebo group.

Additional analyses suggest that the increase in the prevalence of high-grade prostate cancer observed in the finasteride group may be explained by a detection bias due to the effect of finasteride on prostate volume.

Of the total cases of prostate cancer diagnosed in this study, approximately 98% were classified as intracapsular (clinical stage T1 or T2) at diagnosis. The clinical significance of the Gleason scores 7-10 data is unknown.

Laboratory Test Findings

When PSA laboratory determinations are evaluated, consideration should be given to the fact that PSA levels are decreased in patients treated with Finasteride (see section 4.4 Special warnings and precautions for use).

4.9 Overdose

In clinical studies, single doses of finasteride up to 400 mg and multiple doses of finasteride up to 80 mg/day for three months (n = 71) did not result in dose-related undesirable effects.

No specific treatment of overdosage with finasteride is recommended.

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic Group: Testosterone-5-alpha reductase inhibitors

ATC code: G04C B01.

Finasteride is a competitive inhibitor of human Type II 5a-reductase, an intracellular enzyme which metabolises testosterone into the more potent androgen, dihydrotestosterone (DHT). In benign prostatic hyperplasia (BPH), enlargement of the prostate gland is dependent upon the conversion of testosterone to DHT within the prostate. Finasteride is highly effective in reducing circulating and intraprostatic DHT. Finasteride has no affinity for the androgen receptor.

Clinical studies show a rapid reduction of the serum DHT levels of 70%, which leads to a reduction on prostate volume. After 3 months, a reduction of approx. 20% in the volume of the gland occurs, and the shrinking continues and reaches approximately 27% after 3 years. Marked reduction takes place in the periurethral zone immediately surrounding the urethra. Urodynamic measurements have also confirmed a significant reduction of detrusor pressure as a result of the reduced obstruction.

Significant improvements in maximum urinary flow rate and symptoms have been obtained after a few weeks, compared with the start of treatment. Differences from placebo have been documented at 4 and 7 months, respectively.

All efficacy parameters have been maintained over a 3-year follow-up period.

Effects of four years treatment with finasteride on incidence of acute urine retention need for surgery, symptom-score and prostate volume:

In clinical studies of patients with moderate to severe symptoms of BPH, an enlarged prostate on digital rectal examination and low residual urinary volumes, finasteride reduced the incidence of acute retention of urine from 7/100 to 3/100 over four years and the need for surgery (TURP or prostatectomy) from 10/100 to 5/100. These reductions were associated with a 2-point improvement in QUASI-AUA symptom score (range 0-35), a sustained regression in prostate volume of approximately 20% and a sustained increase in urinary flow rate.

MEDICAL THERAPY OF PROSTATIC SYMPTOMS

The medical therapy of prostatic symptoms (MTOPS) trial was a 4 to 6 year study in 3047 men with symptomatic BPH who were randomised to receive finasteride 5 mg/day and doxazosin 4 or 8 mg/day, the combination of finasteride 5 mg/day and doxazosin 4 or 8 mg/day or placebo. The primary endpoint was time to clinical progression of BPH, defined as = 4 point confirmed increase from baseline in symptom score, acute urinary retention, BPH-related renal insufficiency, recurrent urinary tract infections or urosepsis or incontinence. Compared to placebo, treatment with finasteride, doxazosin, or combination therapy resulted in a significant reduction in the risk of clinical progression of BPH by 34, 39 and 67 %, respectively. The majority of the events (274out of 351) that constituted BPH progression were confirmed = 4 points increases in symptom scores; the risk of symptom score progression was reduced by 30, 46 and 64%, in the finasteride, doxazosin, and combination groups, respectively, compared to placebo. Acute urinary retention accounted for 41 of the 351 events of BPH progression; the risk of developing acute urinary retention was reduced by 67, 31 and 79%, in the finasteride, doxazosin and combination groups, respectively, compared to placebo. Only the finasteride and combination therapy groups were significantly different from placebo.

* Titrated from 1 mg to 4 or 8 mg as tolerated over a 3-week period

5.2 Pharmacokinetic properties

Absorption:

The bioavailability of finasteride is approx. 80%. Peak plasma concentrations are reached approx. 2 hours after drug intake, and absorption is complete after 6-8 hours.

Distribution:

Binding to plasma proteins is approx. 93%. Clearance and volume of distribution are approx. 165 ml/min (70-279 ml/min) and 76 l (44-96 l), respectively. Accumulation of small amounts of finasteride is seen on repeated administration. After a daily dose of 5 mg the lowest steady-state concentration of finasteride has been calculated to be 8-10 ng/ml, which remains stable over time.

Biotransformation:

Finasteride is metabolized primarily via but does not affect the cytochrome P450 3A4 system. Following an oral dose of 14C-finasteride in man, two metabolites of finasteride were identified that possess only a small fraction of the 5a-reductase inhibitory activity of finasteride.

Elimination:

The plasma half-life averages 6 hours (4-12 hours) (in men >70 years of age, 8 hours, range 6-15 hours).

After an oral dose of 14C - finasteride in man, 39% of the dose was excreted in the urine in the form of metabolites (virtually no unchanged drug was excreted in the urine), and 57% of total dose was excreted in faeces. Two metabolites have been identified which possess only a small fraction of the type II 5-a-reductase activity of finasteride.

The oral bioavailability of finasteride is approximately 80%, relative to an intravenous reference dose and is unaffected by food. Maximum plasma concentrations are reached approximately two hours after dosing and the absorption is complete within 6-8 hours. Finasteride mean half-life is 6 hours. Protein binding is approximately 93%. Plasma clearance and the volume of distribution are approximately 165 ml/min and 76 L, respectively.

A multiple dose study showed a slow accumulation of small amounts of finasteride with the passing of time. After a daily dose of 5 mg, finasteride plasma concentrations at the fixed part of the curve were calculated at 8-10 ng/mL and remained stable with the passing of time.

Finasteride has been found to cross the blood-brain barrier. Small amounts of finasteride have been recovered in the seminal fluid of treated. In 2 studies of healthy subjects (n=69) receiving finasteride 5 mg/day for 6-24 weeks, finasteride concentrations in semen ranged from undetectable (<0.1 ng/ml) to 10.54 ng/ml. In an earlier study using a less sensitive assay, finasteride concentrations in the semen of 16 subjects receiving finasteride 5 mg/day ranged from undetectable (<1.0 ng/ml) to 21 ng/ml. Thus, based on a 5-ml ejaculate volume, the amount of finasteride in semen was estimated to be 50-to 100-fold less than the dose of finasteride (5 pg) that had no effect on circulating DHT levels in men (see also section 5.3.).

In the elderly, the elimination rate of finasteride is somewhat decrease. Halflife is prolonged from a mean half-life of approximately 6 hours in men aged 18-60 years to 8 hours in men aged more than 70 years. This is of no clinical significance and does not warrant a reduction in dosage.

In patients with chronic renal impairment, whose creatinine clearance ranged from 9-55 ml/min, the disposition single dose of 14C - finasteride was not different from that in healthy volunteers. Protein binding also did not differ in patients with renal impairment. A portion of the metabolites that normally is excreted renally was excreted in the faeces. It therefore appears that faecal excretion increases commensurate to the decrease in urinary excretion of metabolites. Dosage adjustment in non-dialysed patients with renal impairment is not necessary.

There are no data available in patients with hepatic impairment.

5.3 Preclinical safety data

Non-clinical data reveal no special hazard for humans based on conventional studies of repeated dose toxicity, genotoxicity, and carcinogenic potential.

Reproductive toxicity studies in male rats have demonstrated reduced prostate and seminal vesicular weights, reduced secretion from accessory genital glands and reduced fertility index (caused by the primary pharmacological effect of finasteride). The clinical relevance of these findings is unclear.

As with other 5-alpha-reductase inhibitors, feminisation of male rat foetuses has been seen with the administration of finasteride in the gestation period. Intravenous administration of finasteride to pregnant rhesus monkeys at doses as high as > 800 ng/day during the entire period of embryonic and foetal development resulted in no abnormalities in male foetuses. This dose is approximately 60-120 times higher than the estimated quantity in semen of a man receiving finasteride 5 mg, and to which a women would be exposed. Sustaining the relevance of the Rhesus model for human fetal development, oral administration of finasteride 2 mg/kg/day (the systemic exposure (AUC) in monkeys was slightly higher (3x) than in men receiving 5 mg of finasteride or approximately 1-2 million times the estimated quantity of finasteride in semen) to pregnant monkeys resulted in external genital abnormalities in male foetuses. No other abnormalities were observed in male foetuses and no finasteride-related abnormalities were observed in female foetuses at any dose.

6    PHARMACEUTICAL PARTICULARS

6.1    List of excipients

Nucleus:

-    Lactose monohydrate,

-    Cellulose microcrystalline,

-    Sodium starch glycolate (Type A)

-    Starch, pregelatinised (maize),

-    Docusate sodium

-    Yellow iron oxide (E172)

-    Magnesium stearate.

Coating:

-OPADRY Y-1-7000 ( hypromellose, titanium dioxide (E171), macrogol 400)

-    Indigotine (E132).

6.2 Incompatibilities

Not applicable

6.3 Shelf life

4 years.

6.4 Special precautions for storage

This medicinal product does not require any special storage conditions. Store in the original package.

Nature and contents of container

6.5


Tablets are packed in PVC/aluminium blisters in 10, 15, 28, 30, 50, 60 and 100 tablets packages.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal and other handling

Women should not handle crushed or broken tablets of Finasteride when they are or may potentially be pregnant (see section 4.3 Contraindications and 4.6. Fertility, pregnancy and Lactation, Pregnancy - Exposure to finasteride - risk to male foetus).

7 MARKETING AUTHORISATION HOLDER

Morningside Healthcare Ltd

115 Narborough Road

Leicester

LE30PA

UK

8    MARKETING AUTHORISATION NUMBER(S)

PL 20117/0016

9    DATE OF FIRST AUTHORISATION/RENEWAL OF THE

AUTHORISATION

18/11/2008

10 DATE OF REVISION OF THE TEXT

16/08/2012