Medine.co.uk

Pantoprazole 40 Mg Gastro-Resistant Tablets

Informations for option: Pantoprazole 40 Mg Gastro-Resistant Tablets, show other option
Document: spc-doc_PL 29831-0373 change

SUMMARY OF PRODUCT CHARACTERISTICS

1 NAME OF THE MEDICINAL PRODUCT

Pantoprazole 40 mg gastro-resistant tablets

2 QUALITATIVE AND QUANTITATIVE COMPOSITION

One gastro-resistant tablet contains:

40 mg Pantoprazole (as pantoprazole sodium sesquihydrate).

For a full list of excipients, see section 6.1.

3 PHARMACEUTICAL FORM

Gastro-resistant tablet.

A yellow, oval, biconvex gastro-resistant tablet; plain on both sides.

4    CLINICAL PARTICULARS

4.1    Therapeutic indications

Adults and adolescents 12 years of age and above

-    Reflux oesophagitis.

Adults

-    Eradication of Helicobacter pylori (H. pylori) in combination with appropriate antibiotics therapy in patients with H. pylori associated ulcers.

-    Gastric and duodenal ulcer.

-    Zollinger-Ellison-Syndrome and other pathological hypersecretory conditions.

4.2 Posology and method of administration

Tablets should not be chewed or crushed, and should be swallowed whole one hour before a meal with some water.

Adults and adolescents 12 years of age and above:

Reflux oesophagitis

One pantoprazole 40 mg gastro-resistant tablet per day. In individual cases the dose may be doubled (increase to two tablets daily) especially when there has been no response to other treatment. A four week period is usually required for the treatment of reflux oesophagitis. If this is not sufficient, healing will usually be achieved within a further four weeks.

Adults:

Eradication of H. _pylori in combination with two appropriate antibiotics:

In H. pylori positive patients with gastric and duodenal ulcers, eradication of the germ by a combination therapy should be achieved. Considerations should be given to official local guidance (e.g. national recommendations) regarding bacterial resistance and the appropriate use and prescription of antibacterial agents. Depending upon the resistance patter, the following combinations can be recommended for the eradication of H. pylori:

a)    twice daily one Pantoprazole 40 mg gastro-resistant tablet + twice daily 1000 mg amoxycillin

+ twice daily 500 mg clarithromycin

b)    twice daily one Pantoprazole 40 mg gastro-resistant tablet

+ twice daily 400 - 500 mg metronidazole (or 500 mg tinidazole) + twice daily 250 - 500 mg clarithromycin

c)    twice daily one Pantoprazole 40 mg gastro-resistant tablet + twice daily 1000 mg amoxicillin

+ twice daily 400 - 500 mg metronidazole (or 500 mg tinidazole)

In combination therapy for eradication of H. pylori infection, the second pantoprazole 40 mg gastro-resistant tablet should be taken one hour before the evening meal. The combination therapy is implemented for seven days in general and can be prolonged for a further seven days to a total duration of up to two weeks. If, to ensure healing of the ulcers, further treatment with pantoprazole is indicated, the dose recommendations for duodenal and gastric ulcers should be considered.

If combination therapy is not an option, e.g. if the patient has tested negative for H. pylori, the following dose guidelines apply for pantoprazole monotherapy:

Treatment of gastric ulcer

One pantoprazole 40 mg gastro-resistant tablets per day.

In individual cases the dose may be doubled (increase to two tablets daily) especially when there has been no response to other treatment. A four week period is usually required for the treatment of gastric ulcers. If this is not sufficient, healing will usually be achieved within a further four weeks.

Treatment of duodenal ulcer

One pantoprazole 40 mg gastro-resistant tablets per day. In individual cases the dose may be doubled (increase to two tablets daily) especially when there has been no response to other treatment. A duodenal ulcer generally heals within two weeks. If a two week period of treatment is not sufficient, healing will be achieved in almost all cases within a further two weeks.

Zollinger-Ellison-Syndrome and other pathological hypersecretory conditions

For the long-term management of Zollinger-Ellison-Syndrome and other pathological hypersecretory conditions patients should start their treatment with a daily dose of 80 mg (two tablets of pantoprazole 40 mg). Thereafter, the dosage can be titrated up or down as needed using measurements of gastric acid secretion to guide. With doses above 80 mg daily, the dose should be divided and given twice daily. A temporary increase of the dosage above 160 mg pantoprazole is possible but should not be applied longer than required for adequate acid control.

Treatment duration in Zollinger-Ellison-Syndrome and other pathological hypersecretory conditions is not limited and should be adapted according to clinical needs.

Special populations Children below 12 years of age:

Pantoprazole 40 mg gastro-resistant tablets are not recommended for use in children below 12 years of age due to limited data on safety and efficacy in this age group.

Hepatic Impairment

A daily dose of 20 mg pantoprazole (one tablet of 40 mg pantoprazole) should not be exceeded in patients with severe liver impairment. Pantoprazole gastro-resistant tablets must not be used in combination treatment for eradication of H. pylori in patients with moderate to severe hepatic dysfunction since currently no data are available on the efficacy and safety of pantoprazole gastro-resistant tablets in combination treatment of these patients (see section 4.4).

Renal Impairment

No dose adjustment is necessary in patients with impaired renal function. Pantoprazole gastro-resistant tablets must not be used in combination treatment for eradication of H. pylori in patients with impaired renal function since currently no data are available on the efficacy and safety of pantoprazole gastro-resistant tablets in combination treatment for these patients.

Elderly:

No dose adjustment is necessary in the elderly.

4.3 Contraindications

Hypersensitivity to the active substance, substituted benzimidazoles, or to any of the other excipients or of the combination partners.

4.4 Special warnings and precautions for use

Hepatic Impairment

In patients with severe liver impairment, the liver enzymes should be monitored regularly during treatment with pantoprazole, particularly on longterm use. In the case of a rise in liver enzymes, the treatment should be discontinued (see section 4.2).

Combination therapy

In the case of combination therapy, the summaries of product characteristics of the respective medicinal products should be observed.

In the presence of alarm symptoms

In the presence of any alarm symptom (e.g. significant unintentional weight loss, recurrent vomiting, dysphagia, haematemesis, anaemia or melaena) and when gastric ulcer is suspected or present, malignancy should be excluded, as treatment with pantoprazole may alleviate symptoms and delay diagnosis.

Further investigation is to be considered if symptoms persist despite adequate treatment.

Co-administration with atazanavir

Co-administration with atazanavir with proton pump inhibitors is not recommended (see section 4.5). If the combination of atazanavir with a proton pump inhibitor is judged unavoidable, close clinical monitoring (e.g. virus load) is recommended in combination with an increase in the dose of atazanavir to 400 mg with 100 mg of ritonavir. A pantoprazole dose of 20 mg per day should not be exceeded.

Influence on vitamin B12 absorption

In patients with Zollinger-Ellison-Syndrome and other pathological hypersecretory conditions requiring long-term treatment, pantoprazole, as all acid-blocking medicines, may reduce the absorption of vitamin B12 (cyanocobalamin) due to hypo- or achlorhydria. This should be considered in patients with reduced body stores or risk factors for reduced vitamin B12 absorption on long-term therapy or if respective clinical symptoms are observed.

Interference with laboratory tests

Increased Chromogranin A (CgA) level may interfere with investigations for neuroendocrine tumours. To avoid this interference, Pantoprazole treatment should be stopped for at least 5 days before CgA measurements (see section 5.1). If CgA and gastrin levels have not returned to reference range after initial measurement, measurements should be repeated 14 days after cessation of proton pump inhibitor treatment.

Long term treatment

In long-term treatment, especially when exceeding a treatment period of one year, patients should be kept under regular surveillance.

Risk of fracture

Proton pump inhibitors, especially if used in high doses and over long durations (>1 year), may modestly increase the risk of hip, wrist and spine fracture, predominantly in the elderly or in presence of other recognised risk factors. Observational studies suggest that proton pump inhibitors may increase the overall risk of fracture by 1040%. Some of this increase may be due to other risk factors. Patients at risk of osteoporosis should receive care according to current clinical guidelines and they should have an adequate intake of vitamin D and calcium.

Gastrointestinal infections caused by bacteria

Pantoprazole, like all proton pump inhibitors (PPIs), might be expected to increase the counts of bacteria normally present in the upper gastrointestinal tract. Treatment with pantoprazole may lead to a slightly increased risk of gastrointestinal infections caused by bacteria such as Salmonella and Campylobacter.

Hypomagnesaemia

Severe hypomagnesaemia has been reported in patients treated with PPIs like pantoprazole for at least three months, and in most cases for a year. Serious manifestations of hypomagnesaemia such as fatigue, tetany, delirium, convulsions, dizziness and ventricular arrhythmia can occur but they may begin insidiously and be overlooked. In most affected patients, hypomagnesaemia improved after magnesium replacement and discontinuation of the PPI.

For patients expected to be on prolonged treatment or who take PPIs with digoxin or drugs that may cause hypomagnesaemia (e.g., diuretics), health care professionals should consider measuring magnesium levels before starting PPI treatment and periodically during treatment.

Subacute cutaneous lupus erythematosus

Proton pump inhibitors are associated with very infrequent cases of SCLE. If lesions occur, especially in sun-exposed areas of the skin, and if accompanied by arthralgia, the patient should seek medical help promptly and the healthcare professional should consider stopping pantoprazole. SCLE after previous treatment with a proton pump inhibitor may increase the risk of SCLE with other proton pump inhibitors.

4.5 Interaction with other medicinal products and other forms of interaction

Effect of _ pantoprazole on the absorption of other medicinal _ products

Because of profound and long lasting inhibition of gastric acid secretion, pantoprazole may reduce the absorption of drugs with a gastric pH dependent bioavailability, e.g. some azole antifungals such as ketoconazole, itraconazole, posaconazole and other medicines such as erlotinib.

HIV medications (atazanavir)

Co-administration of atazanavir and other HIV medications whose absorption is pH-dependent with proton-pump inhibitors might result in a substantial reduction in the bioavailability of these HIV medications and might impact the efficacy of these medicines. Therefore, the co-administration of proton pump inhibitors with atazanavir is not recommended (see section 4.4).

Coumarin anticoagulants (phenprocoumon or warfarin)

Although no interaction during concomitant administration of phenprocoumon or warfarin has been observed in clinical pharmacokinetic studies, a few isolated cases of changes in International Normalised Ratio (INR) have been reported during concomitant treatment in the post-marketing period. Therefore, in patients treated with coumarin anticoagulants (e.g. phenprocoumon or warfarin), monitoring of prothrombin time/INR is recommended after initiation, termination or during irregular use of pantoprazole.

Methotrexate

Concomitant use of high dose methotrexate (e.g. 300 mg) and proton-pump inhibitors has been reported to increase methotrexate levels in some patients. In settings where high-dose methotrexate is used, for example cancer and psoriasis, a temporary withdrawal of pantoprazole may need to be considered.

Other interactions studies

Pantoprazole is extensively metabolised in the liver via the cytochrome P450 enzyme system. The main metabolic pathway is demethylation by CYP2C19 and other metabolic pathways include oxidation by CYP3A4.

Interaction studies with drugs also metabolised with these pathways, like carbamazepine, diazepam, glibenclamide, nifedipine, and an oral contraceptive containing levonorgestrel and ethinyl oestradiol did not reveal clinically significant interactions.

Results from a range of interaction studies demonstrate that pantoprazole does not effect the metabolism of active substances metabolised by CYP1A2 (such as caffeine, theophylline), CYP2C9 (such as piroxicam, diclofenac, naproxen), CYP2D6 (such as metoprolol), CYP2E1 (such as ethanol) or does not interfere with p-glycoprotein related absorption of digoxin.

There were also no interactions with concomitantly administered antacids.

Interaction studies have also been performed administering pantoprazole concomitantly with the respective antibiotics (clarithromycin, metronidazole, amoxicillin). No clinically relevant interactions were found.

4.6 Fertility, pregnancy and lactation

Pregnancy

There are no adequate data from the use of pantoprazole in pregnant women. Studies in animals have shown reproductive toxicity (see section 5.3). The potential risk for humans is unknown. Pantoprazole should not be used during pregnancy unless clearly necessary.

Lactation

Animal studies have shown excretion of pantoprazole in breast milk. Excretion into human milk has been reported. Therefore a decision on whether to continue/discontinue breast-feeding or to continue/discontinue therapy with pantoprazole should be made taking into account the benefit of breast-feeding to the child and the benefit of pantoprazole therapy to women.

Fertility

There was no evidence of impaired fertility following the administration of pantoprazole in animal studies (see section 5.3).

4.7 Effects on ability to drive and use machines

Pantoprazole has no or negligible influence on the ability to drive and use machines. Adverse drug reactions such as dizziness and visual disturbances may occur (see section 4.8). If affected, patients should not drive or operate machines.

4.8 Undesirable effects

Approximately 5 % of patients can be expected to experience adverse drug reactions (ADRs). The most commonly reported ADRs are diarrhoea and headache, both occurring in approximately 1 % of patients.

The table below lists adverse reactions reported with pantoprazole, ranked under the following frequency classification:

Very common (>1/10); common (>1/100 to <1/10); uncommon (>1/1,000 to <1/100); rare (>1/10,000 to <1/1,000); very rare (<1/10,000), not known (cannot be estimated from the available data).

For all adverse reactions reported from post-marketing experience, it is not possible to apply any Adverse Reaction frequency and therefore they are mentioned with a “not known” frequency.

Within each frequency grouping, adverse reactions are presented in order of decreasing seriousness.

Table 1. Adverse reactions with pantoprazole in clinical trials and post-marketing experience

requency

System'"--^ Organ Class"-\

Uncommon

Rare

Very rare

Not known

Blood and lymphatic system disorders

Agranulocytosis

Thrombocytopenia;

Leukopenia

Pancytopenia

Immune system disorders

Hypersensitivity

(including

requency System'--^ Organ Class'--..^

Uncommon

Rare

Very rare

Not known

anaphylactic reactions and anaphylactic shock)

Metabolism and nutrition disorders

Hyperlipidaemias and lipid increases (triglycerides, cholesterol); Weight changes

Hyponatraemia, hypomagnesaemia (see Special warnings and precautions for use (4.4))

Psychiatric

disorders

Sleep disorders

Depression (and all aggravations)

Disorientation (and all aggravations)

Hallucination; Confusion (especially in predisposed patients, as well as the aggravation of these symptoms in case of pre-existence)

Nervous system disorders

Headache;

Dizziness

Taste disorders

Eye disorders

Disturbances in vision / blurred vision

Gastrointestinal

Disorders

Diarrhoea; Nausea/V omiting; Abdominal distension and bloating;

Constipation; Dry mouth; Abdominal pain and discomfort

Hepatobiliary

disorders

Liver enzymes increased (transaminases, y-GT)

Bilirubin

increased

Hepatocellular injury; Jaundice; Hepatocellular failure

Skin and subcutaneous tissue disorders

Rash / exanthema / eruption; Pruritus

Urticaria;

Angioedema

Stevens-Johnson syndrome; Lyell syndrome; Erythema multiforme; Photosensitivity Subacute cutaneous lupus

erythematosus (see section 4.4)

Musculoskeletal and connective tissue disorders

Fracture of the hip, wrist or spine (see section 4.4)

Athralgia;

Myalgia

Renal and urinary disorders

Interstitial nephritis

Reproductive

Gynaecomastia

^"--..F requency System'--.^ Organ Class'---^

Uncommon

Rare

Very rare

Not known

system and breast disorders

General disorders and

administration site conditions

Asthenia, fatigue and malaise

Body temperature increased; Oedema peripheral

Reporting of suspected adverse reactions

Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme at www.mhra.gov.uk/yellowcard.

4.9 Overdose

There are no known symptoms of overdose in man.

Systemic exposure with up to 240 mg administered intravenously over two minutes was well tolerated. As pantoprazole is extensively protein bound, it is not readily dialysable.

In the case of overdose with clinical signs of intoxication, apart from symptomatic and supportive treatment, no specific therapeutic recommendations can be made.

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Proton Pump Inhibitors., ATC code: A02BC02. Mechanism of action

Pantoprazole is a substituted benzimidazole, which inhibits the secretion of hydrochloric acid in the stomach by specific blockade of the proton pumps of the parietal cells.

Pantoprazole is converted to its active form in the acidic environment in the parietal cells where it inhibits the H+,K+-ATPase enzyme, i.e. the final stage in the production of hydrochloric acid in the stomach. The inhibition is dose-dependent and affects both basal and stimulated acid secretion. In most patients, freedom from symptoms is achieved within two weeks. As with other proton pump inhibitors and H2 receptor inhibitors, treatment with pantoprazole reduces acidity in the stomach and thereby increases gastrin in proportion to the reduction in acidity. The increase in gastrin is reversible. Since pantoprazole binds to the enzyme distal to the cell receptor level, it can inhibit hydrochloric acid secretion independently of the stimulation by other substances (acetylcholine, histamine, gastrin).

Pantoprazole has the same effect whether administered orally or intravenously.

The fasting gastrin values increase under pantoprazole. On short-term use, in most cases they do not exceed the upper limit of normal. During long-term treatment, gastrin levels double in most cases. An excessive increase, however, occurs only in isolated cases. As a result, a mild to moderate increase in the number of specific endocrine (ECL) cells in the stomach is observed in a minority of cases during long-term treatment (simple to adenomatoid hyperplasia). However, according to the studies conducted so far, the formation of carcinoid precursors (atypical hyperplasia) or gastric carcinoids as were found in animal experiments (see Section 5.3) have not been observed in humans.

An influence of a long term treatment with pantoprazole exceeding one year cannot be completely ruled out on endocrine parameters of the thyroid according to results in animal studies.

During treatment with antisecretory medicinal products, serum gastrin increases in response to the decreased acid secretion. Also CgA increases due to decreased gastric acidity. The increased CgA level may interfere with investigations for neuroendocrine tumours.

Available published evidence suggests that proton pump inhibitors should be discontinued between 5 days and 2 weeks prior to CgA measurements. This is to allow CgA levels that might be spuriously elevated following PPI treatment to return to reference range.

5.2 Pharmacokinetic properties

Absorption

Pantoprazole is rapidly absorbed and the maximal plasma concentration is achieved even after one single 40 mg oral dose. On average at about 2.5 h p.a. the maximum serum concentrations of about 2 - 3 pg/ml are achieved and these values remain constant after multiple administration.

Pharmacokinetics do not vary after single or repeated administration. In the dose range of 10 to 80 mg, the plasma kinetics of pantoprazole are linear after both oral and intravenous administration.

The absolute bioavailability from the tablet was found to be about 77%. Concomitant intake of food had no influence on AUC, maximum serum concentrations and thus bioavailability. Only the variability of the lag-time will be increased by concomitant food intake.

Pantoprazole's serum protein binding is about 98%. Volume of distribution is about 0.15 l/kg.

Elimination

The substance is almost exclusively metabolised in the liver. The main metabolic pathway is demethylation by CYP2C19 with subsequent sulphate conjugation, other metabolic pathways include oxidation by CYP3A4. Terminal half-life is about 1 hour and clearance is about 0.1 l/h/kg. There were a few cases of subjects with delayed elimination. Because of the specific binding of pantoprazole to the proton pumps of the parietal cell, the elimination half-life does not correlate with the much longer duration of action (inhibition of acid secretion).

Renal elimination represents the major route of excretion (about 80%) for the metabolites of pantoprazole; the rest is excreted with the faeces. The main metabolite in both the serum and urine is desmethylpantoprazole, which is conjugated with sulphate. The half-life of the main metabolite (about 1.5 hours) is not much longer than that of pantoprazole.

Characteristics in patients/special groups of subjects

Approximately 3 % of the European population lack a functional CYP2C19 enzyme and are called poor metabolisers. In these individuals the metabolism of pantoprazole is probably mainly catalysed by CYP3A4. After a single-dose administration of 40 mg pantoprazole, the mean area under the plasma concentration-time curve was approximately 6 times higher in poor metabolisers than in subjects having a functional CYP2C19 enzyme (extensive metabolisers). Mean peak plasma concentrations were increased by about 60 %. These findings have no implications for the posology of pantoprazole.

No dose reduction is recommended when pantoprazole is administered to patients with impaired renal function (including dialysis patients). As with healthy subjects, pantoprazole's half-life is short. Only very small amounts of pantoprazole are dialysed. Although the main metabolite has a moderately delayed half-life (two to three hours), excretion is still rapid and thus accumulation does not occur.

Although for patients with liver cirrhosis (classes A and B according to Child) the half-life values increased to between seven and nine hours and the AUC values increased by a factor of five to seven, the maximum serum concentration only increased slightly by a factor of 1.5 compared with healthy subjects.

A slight increase in AUC and Cmax in elderly volunteers compared with younger counterparts is also not clinically relevant.

Children

Following administration of single oral doses of 20 or 40 mg pantoprazole to children aged 5 to 16 years AUC and Cmax were in the range of corresponding values in adults.

Following administration of single intravenous doses of 0.8 or 1.6 mg/kg pantoprazole to children aged 2 to 16 years there was no significant association between pantoprazole clearance and age or weight. AUC and volume of distribution were in accordance with data from adults.

5.3 Preclinical safety data

Preclinical data reveal no special hazard to humans based on conventional studies of safety pharmacology, repeated dose toxicity and genotoxicity.

In the two-year carcinogenicity studies in rats neuroendocrine neoplasms were found. In addition, squamous cell papillomas were found in the forestomach of rats. The mechanism leading to the formation of gastric carcinoids by substituted benzimidazoles has been carefully investigated and allows the conclusion that it is a secondary reaction to the massively elevated serum gastrin levels occurring in the rat during chronic high-dose treatment. In the two-year rodent studies an increased number of liver tumours was observed in rats and in female mice and was interpreted as being due to pantoprazole’s high metabolic rate in the liver.

A slight increase of neoplastic changes of the thyroid was observed in the group of rats receiving the highest dose (200 mg/kg). The occurrence of these neoplasms is associated with the pantoprazole-induced changes in the breakdown of thyroxine in the rat liver. As the therapeutic dose in man is low, no harmful effects on the thyroid glands are expected.

In animal reproduction studies, signs of slight fetotoxicity were observed at doses above 5 mg/kg. Investigations revealed no evidence of impaired fertility or teratogenic effects. Penetration of the placenta was investigated in the rat and was found to increase with advanced gestation. As a result, concentration of pantoprazole in the foetus is increased shortly before birth.

6    PHARMACEUTICAL PARTICULARS

6.1    List of excipients

Tablet core

Mannitol (E421)

Partially pre-gelatinized maize starch

Colloidal anhydrous silica

Sodium carbonate (anhydrous) (E500)(i)

Calcium stearate Talc (E553b)

Sodium starch glycolate (type A)

Enteric coating

Methacrylic acid - ethyl acrylate copolymer (1:1) Sodium hydroxide (E524)

Triethyl citrate (E1505)

Talc (E553b)

Coating seal (yellow)

Hypromellose (E464)

Titanium dioxide (E171)

Macrogol 4000

Iron oxide yellow (E172)

Blue indigo carmine aluminium lake (E132).

6.2 Incompatibilities

Not applicable.

6.3 Shelf life

3 years (unopened).

6.4 Special precautions for storage

This medicinal product does not require any special temperature storage conditions.

Store in the original package in order to protect from moisture.

6.5 Nature and contents of container

Blisters (OPA/Aluminium/PVC film and aluminium foil), containing 14 tablets, and outer cardboard carton.

Pack size: 28 tablets.

6.6 Special precautions for disposal

No special requirements.

7    MARKETING AUTHORISATION HOLDER

Wockhardt UK Ltd Ash Road North Wrexham LL13 9UF U.K.

8    MARKETING AUTHORISATION NUMBER(S)

PL 29831/0373

9    DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

24/05/2010

10    DATE OF REVISION OF THE TEXT

28/09/2016