Medine.co.uk

Erastig 4.6 Mg/24 H Transdermal Patch

SUMMARY OF PRODUCT CHARACTERISTICS

1    NAME OF THE MEDICINAL PRODUCT

Erastig 4.6 mg/24 h transdermal patch

2    QUALITATIVE AND QUANTITATIVE COMPOSITION

Each transdermal patch releases 4.6 mg rivastigmine per 24 hours.

Each transdermal patch of 5 cm contains 9 mg rivastigmine.

For the full list of excipients, see section 6.1.

3    PHARMACEUTICAL FORM

Transdermal patch.

The drug product is a three-layer matrix transdermal round shaped patch consisting of backing film, drug (acrylic) matrix containing drug substance, adhesive (silicone) matrix and furthermore a rectangular release liner.

The outside of the backing layer is translucent, white and black-printed as follows;

“Rivastigmine, 4.6 mg/24 h”

4    CLINICAL PARTICULARS

4.1    Therapeutic indications

Symptomatic treatment of mild to moderately severe Alzheimer’s dementia.

Erastig is indicated in adults.

4.2 Posology and method of administration

Treatment should be initiated and supervised by a physician experienced in the diagnosis and treatment of Alzheimer’s dementia. Diagnosis should be made according to current guidelines. Similar to any treatment initiated in patients with dementia, therapy with rivastigmine should only be started if a caregiver is available to regularly administer and monitor the treatment.

Posology

Transdermal patches

Rivastigmine dose load

Rivastigmine in vivo release rates per 24 h

Erastig 4.6 mg/24 h

9 mg

4.6 mg

Erastig 9.5 mg/24 h

18 mg

9.5 mg

Initial dose

Treatment is started with 4.6 mg/24 h.

After a minimum of four weeks of treatment and if well tolerated according to the treating physician, this dose should be increased to 9.5 mg/24 h, which is the recommended effective dose.

Maintenance dose

9.5 mg/24 h is the recommended daily maintenance dose which can be continued for as long as the patient is deriving therapeutic benefit. Treatment should be temporarily interrupted if gastrointestinal adverse reactions are observed until these adverse reactions resolve. Transdermal patch treatment can be resumed at the same dose if treatment is not interrupted for more than several days. Otherwise treatment should be re-initiated with 4.6 mg/24 h.

Switching from capsules or oral solution to transdermal patches

Based on comparable exposure between oral and transdermal rivastigmine (see

section 5.2), patients treated with capsules or oral solutions containing rivastigmine

can be switched to Erastig transdermal patches as follows:

•    A patient on a dose of 3 mg/day oral rivastigmine can be switched to 4.6 mg/24 h transdermal patches.

•    A patient on a dose of 6 mg/day oral rivastigmine can be switched to 4.6 mg/24 h transdermal patches.

•    A patient on a stable and well tolerated dose of 9 mg/day oral rivastigmine can be switched to 9.5 mg/24 h transdermal patches. If the oral dose of 9 mg/day has not been stable and well tolerated, a switch to 4.6 mg/24 h transdermal patches is recommended.

•    A patient on a dose of 12 mg/day oral rivastigmine can be switched to 9.5 mg/24 h transdermal patches.

After switching to 4.6 mg/24 h transdermal patches, provided these are well tolerated after a minimum of four weeks of treatment, the dose of 4.6 mg/24 h should be increased to 9.5 mg/24 h, which is the recommended effective dose.

It is recommended to apply the first transdermal patch on the day following the last oral dose.

Special populations

Renal impairment: No dose adjustment is necessary for patients with renal impairment (see section 5.2).

Paediatric population

The safety and efficacy of Erastig in the paediatric population aged 0 to below 18 years have not been established. No data are available.

There is no relevant use of Erastig in the paediatric population aged 0 to below 18 years in the treatment of Alzheimer’s dementia.

Method of administration

Transdermal patches should be applied once a day to clean, dry, hairless, intact healthy skin on the upper or lower back, upper arm or chest, in a place which will not be rubbed by tight clothing. It is not recommended to apply the transdermal patch to the thigh or to the abdomen due to decreased bioavailability of rivastigmine observed when the transdermal patch is applied to these areas of the body.

The transdermal patch should not be applied to skin that is red, irritated or cut. Reapplication to the exact same skin location within 14 days should be avoided to minimise the potential risk of skin irritation.

The transdermal patch should be pressed down firmly until the edges stick well. It can be used in everyday situations, including bathing and during hot weather.

The transdermal patch should be replaced by a new one after 24 hours. Only one transdermal patch should be worn at a time (see section 4.9). The transdermal patch should not be cut into pieces. Patients and caregivers should be instructed accordingly.

4.3 Contraindications

Hypersensitivity to the active substance, to other carbamate derivatives or to any of the excipients listed in section 6.1.

Previous history of application site reactions suggestive of allergic contact dermatitis with rivastigmine patch (see section 4.4).

4.4 Special warnings and precautions for use

The incidence and severity of adverse reactions generally increase with increasing doses, particularly at dose changes. If treatment is interrupted for more than several days, it should be re-initiated with 4.6 mg/24 h.

Gastrointestinal disorders such as nausea, vomiting and diarrhoea are dose-related, and may occur when initiating treatment and/or increasing the dose (see section 4.8).

These adverse reactions occur more commonly in women. Patients who show signs or symptoms of dehydration resulting from prolonged vomiting or diarrhoea can be managed with intravenous fluids and dose reduction or discontinuation if recognised and treated promptly. Dehydration can be associated with serious outcomes.

Patients with Alzheimer’s disease may lose weight whilst taking cholinesterase inhibitors, including rivastigmine. The patient’s weight should be monitored during therapy with Erastig transdermal patches.

Care must be taken when prescribing Erastig transdermal patches:

•    to patients with sick sinus syndrome or conduction defects (sino-atrial block, atrio-ventricular block) (see section 4.8)

•    to patients with active gastric or duodenal ulcers or patients predisposed to these conditions because rivastigmine may cause increased gastric secretions (see section 4.8)

•    to patients predisposed to urinary obstruction and seizures because cholinomimetics may induce or exacerbate these diseases

•    to patients with a history of asthma or obstructive pulmonary disease

Skin application site reactions may occur with rivastigmine patch and are usually mild or moderate in intensity. These reactions are not in themselves an indication of sensitisation. However, use of rivastigmine patch may lead to allergic contact dermatitis.

Allergic contact dermatitis should be suspected if application site reactions spread beyond the patch size, if there is evidence of a more intense local reaction (e.g. increasing erythema, oedema, papules, vesicles) and if symptoms do not significantly improve within 48 hours after patch removal. In these cases, treatment should be discontinued (see section 4.3).

Patients who develop application site reactions suggestive of allergic contact dermatitis to rivastigmine patch and who still require rivastigmine treatment should only be switched to oral rivastigmine after negative allergy testing and under close medical supervision. It is possible that some patients sensitised to rivastigmine by exposure to rivastigmine patch may not be able to take rivastigmine in any form.

There have been rare post-marketing reports of patients experiencing disseminated skin hypersensitivity reactions when administered rivastigmine irrespective of the route of administration (oral, transdermal). In these cases, treatment should be discontinued (see section 4.3).

Patients and caregivers should be instructed accordingly.

Rivastigmine may exacerbate or induce extrapyramidal symptoms.

Contact with the eyes should be avoided after handling Erastig transdermal patches (see section 5.3).

Special populations

•    Patients with body weight below 50 kg may experience more adverse reactions and may be more likely to discontinue due to adverse reactions.

•    Hepatic impairment: Patients with clinically significant hepatic impairment might experience more adverse reactions (see section 5.2).

4.5 Interaction with other medicinal products and other forms of interaction

No specific interaction studies have been conducted with transdermal rivastigmine patches.

As a cholinesterase inhibitor, rivastigmine may exaggerate the effects of succinylcholine-type muscle relaxants during anaesthesia. Caution is recommended when selecting anaesthetic agents. Possible dose adjustments or temporarily stopping treatment can be considered if needed.

In view of its pharmacodynamic effects, rivastigmine should not be given concomitantly with other cholinomimetic substances and might interfere with the activity of anticholinergic medicinal products.

No pharmacokinetic interaction was observed between oral rivastigmine and digoxin, warfarin, diazepam or fluoxetine in studies in healthy volunteers. The increase in prothrombin time induced by warfarin is not affected by administration of oral rivastigmine. No untoward effects on cardiac conduction were observed following concomitant administration of digoxin and oral rivastigmine.

Concomitant administration of rivastigmine with commonly prescribed medicinal products, such as antacids, antiemetics, antidiabetics, centrally acting antihypertensives, beta blockers, calcium channel blockers, inotropic agents, antianginals, non-steroidal anti-inflammatory agents, oestrogens, analgesics, benzodiazepines and antihistamines, was not associated with an alteration in the kinetics of rivastigmine or an increased risk of clinically relevant untoward effects.

According to its metabolism, metabolic interactions with other medicinal products appear unlikely, although rivastigmine may inhibit the butyrylcholinesterase mediated metabolism of other substances.

4.6 Fertility, Pregnancy and lactation

No clinical data on exposed pregnancies are available. No effects on fertility or embryofoetal development were observed in rats and rabbits, except at doses related to maternal toxicity. In peri/postnatal studies in rats, an increased gestation time was observed. Rivastigmine should not be used during pregnancy unless clearly necessary.

In animals, rivastigmine is excreted into milk. It is not known if rivastigmine is excreted into human milk. Therefore, women on rivastigmine should not breastfeed.

4.7 Effects on ability to drive and use machines

Alzheimer’s disease may cause gradual impairment of driving performance or compromise the ability to use machinery. Furthermore, rivastigmine may induce syncope or delirium. As a consequence, rivastigmine has minor or moderate influence on the ability to drive and use machines. Therefore, in patients with dementia treated with rivastigmine, the ability to continue driving or operating complex machines should be routinely evaluated by the treating physician.

4.8 Undesirable effects

The overall incidence of adverse events (AEs) in patients treated with transdermal patches containing 9.5 mg/24 h rivastigmine was lower than the rate in patients who received 3 to 12 mg/day rivastigmine capsule treatment (50.5% with transdermal patches containing 9.5 mg/24 h rivastigmine vs. 63.3% with rivastigmine capsules; 46.0% of patients on placebo reported AEs). Gastrointestinal adverse reactions, including nausea and vomiting, were the most common adverse reactions in patients who received active treatment, and occurred at a substantially lower rate in the rivastigmine 9.5 mg/24 h transdermal patch group compared to the rivastigmine capsule group (7.2% vs. 23.1% for nausea and 6.2% vs. 17.0% for vomiting; 5.0% and 3.3% of patients on placebo reported nausea and vomiting, respectively).

Adverse reactions in Table 1 are listed according to MedDRA system organ class and frequency category. Frequency categories are defined using the following convention: very common (>1/10); common (>1/100 to <1/10); uncommon (>1/1,000 to <1/100); rare (>1/10,000 to <1/1,000); very rare (<1/10,000); not known (cannot be estimated from the available data).

Table 1 displays the adverse reactions (events reasonably believed to be causally related to the medicinal product) reported in 291 patients with Alzheimer’s dementia

treated in a specific 24-week double-blind, placebo and active-controlled clinical study with transdermal rivastigmine patches at a target dose of 9.5 mg/24 h (4.6 mg/24 h titrated to 9.5 mg/24 h).

Table 1

Infections and infestations

Common:

Urinary tract infection

Metabolism and nutrition disorders

Common:

Anorexia

Not known:

Dehydration

Psychiatric disorders

Common:

Anxiety, depression, delirium

Not known:

Hallucinations, aggression, restlessness

Nervous system disorders

Common:

Headache, syncope

Very rare:

Extrapyramidal symptoms

Not known:

Worsening of Parkinson's disease, seizure

Cardiac disorders

Uncommon:

Bradycardia

Not known:

Atrioventricular block, atrial fibrillation, tachycardia, sick sinus syndrome

Vascular disorders

Not known:

Hypertension

Gastrointestinal disorders

Common:

Nausea, vomiting, diarrhoea, dyspepsia, abdominal pain

Uncommon:

Gastric ulcer

Not known:

Pancreatitis

Hepatobiliary disorders

Not known:

Hepatitis, elevated liver function tests

Skin and subcutaneous tissue disorders

Common:

Rash

Not known:

Pruritus, erythema, urticaria, vesicles, allergic dermatitis

General disorders and administration site conditions

Common:

Application site skin reactions (e.g. application site erythema, application site pruritus, application site oedema, application site dermatitis, application site irritation), asthenic conditions (e.g. fatigue, asthenia), pyrexia, weight decreased

Not known:

Fall

When doses higher than 9.5 mg/24 h were used in the above-mentioned study, dizziness, insomnia, agitation, decreased appetite, atrial fibrillation and cardiac failure were observed more frequently than with 9.5 mg/24 h or placebo, suggesting a dose effect relationship. However, these events did not occur at a higher frequency with Erastig 9.5 mg/24 h transdermal patches than with placebo.

Table 2 shows the most frequent adverse reactions reported during a 76-week period in an open-label clinical study conducted with rivastigmine transdermal patches in patients with dementia associated with Parkinson’s disease.

Table 2

Metabolism and nutrition disorders

Common    Dehydration

Psychiatric disorders

Common    Insomnia, anxiety, agitation, visual hallucination,

depression, aggression

Nervous system disorders

Common    Headache, tremor, dizziness, somnolence, bradykinesia,

dyskinesia, hypokinesia, cogwheel rigidity, weight decrease

Vascular disorders

Common    Hypertension

Gastrointestinal disorders

Common    Abdominal pain

General disorders and administration site conditions

Very common    Fall, application    site    erythema

Common    Application site irritation, pruritus, rash, fatigue, asthenia,

gait disturbance


In patients with dementia associated with Parkinson’s disease, the following common adverse reactions have only been observed with rivastigmine capsules and not with rivastigmine transdermal patches: nausea, vomiting (very common); decreased appetite, restlesness, headache, worsening of Parkinson’s disease, bradycardia, diarrhoea, dyspepsia, salivary hypersecretion, sweating increased (common); dystonia, atrial fibrillation, atrioventricular block (uncommon).

The following adverse reactions have only been observed with capsules and oral solution containing rivastigmine and not in clinical studies with rivastigmine 9.5 mg/24 h transdermal patches: Dizziness (very common); agitation, somnolence, malaise, tremor, confusion, sweating increased (common); insomnia, accidental fall,

elevated liver function tests (uncommon); seizures, duodenal ulcers, angina pectoris (rare); cardiac arrhythmia (e.g. atrioventricular block, atrial fibrillation and tachycardia), hypertension, pancreatitis, gastrointestinal haemorrhage, hallucination (very rare); and some cases of severe vomiting were associated with oesophageal rupture (not known).

Skin irritation

In clinical trials, skin reactions were measured at each visit using a skin irritation rating scale that rated the degree of erythema, oedema, scaling, fissures, pruritus and pain/stinging/burning at the application site. The most commonly observed symptom was erythema which disappeared within 24 hours in the vast majority of patients. In a 24-week double-blind study, the most commonly observed symptoms (skin irritation rating scale) with rivastigmine 9.5 mg/24 h transdermal patches were very slight (21.8%), mild (12.5%) or moderate (6.5%) erythema or very slight (11.9%), mild (7.3%) or moderate (5.0%) pruritus. The most commonly observed severe symptoms with rivastigmine 9.5 mg/24 h transdermal patches were pruritus (1.7%) and erythema (1.1%). Most skin reactions were limited to the application site and resulted in discontinuation in only 2.4% of the patients in the rivastigmine 9.5 mg/24 h transdermal patch group.

4.9 Overdose

Symptoms

Most cases of accidental overdose of oral rivastigmine have not been associated with any clinical signs or symptoms and almost all of the patients concerned continued rivastigmine treatment. Where symptoms have occurred, they have included nausea, vomiting and diarrhoea, hypertension or hallucinations. Due to the known vagotonic effect of cholinesterase inhibitors on heart rate, bradycardia and/or syncope may also occur. Ingestion of 46 mg of oral rivastigmine occurred in one case; following conservative management the patient fully recovered within 24 hours. Overdose with transdermal rivastigmine patches resulting from misuse/dosing errors (application of multiple patches at a time) has been reported in the post-marketing setting. The typical symptoms reported among these cases are similar to those seen with cases of overdose associated with oral rivastigmine formulations.

Treatment

As rivastigmine has a plasma half-life of about 3.4 hours and a duration of acetylcholinesterase inhibition of about 9 hours, it is recommended that in cases of asymptomatic overdose all transdermal rivastigmine patches should be removed immediately and no further transdermal patch should be applied for the next 24 hours. In overdose accompanied by severe nausea and vomiting, the use of antiemetics should be considered. Symptomatic treatment for other adverse reactions should be given as necessary.

In massive overdose, atropine can be used. An initial dose of 0.03 mg/kg intravenous atropine sulphate is recommended, with subsequent doses based on clinical response. Use of scopolamine as an antidote is not recommended.

5 PHARMACOLOGICAL PROPERTIES

5.1 Pharmacodynamic properties

Pharmacotherapeutic group: Psychoanaleptics; Anti-dementia drugs; Anticholinesterases, ATC code: N06DA03

Rivastigmine is an acetyl- and butyrylcholinesterase inhibitor of the carbamate type, thought to facilitate cholinergic neurotransmission by slowing the degradation of acetylcholine released by functionally intact cholinergic neurones. Thus, rivastigmine may have an ameliorative effect on cholinergic-mediated cognitive deficits in dementia associated with Alzheimer’s disease.

Rivastigmine interacts with its target enzymes by forming a covalently bound complex that temporarily inactivates the enzymes. In healthy young men, an oral 3 mg dose decreases acetylcholinesterase (AChE) activity in CSF by approximately 40% within the first 1.5 hours after administration. Activity of the enzyme returns to baseline levels about 9 hours after the maximum inhibitory effect has been achieved. In patients with Alzheimer’s disease, inhibition of AChE in CSF by oral rivastigmine was dose-dependent up to 6 mg given twice daily, the highest dose tested.

Inhibition of butyrylcholinesterase activity in CSF of 14 Alzheimer patients treated by oral rivastigmine was similar to that of AChE.

Clinical studies in Alzheimer’s dementia

The efficacy of transdermal rivastigmine patches in patients with Alzheimer’s dementia has been demonstrated in a 24-week double-blind core study and its open-label extension phase. Patients involved in this study had an MMSE (Mini-Mental State Examination) score of 10-20. Efficacy was established by the use of independent, domain-specific assessment tools which were applied at regular intervals during the 24-week treatment period. These include the ADAS-Cog (Alzheimer’s Disease Assessment Scale - Cognitive subscale, a performance-based measure of cognition) and the ADCS-CGIC (Alzheimer’s Disease Cooperative Study - Clinician’s Global Impression of Change, a comprehensive global assessment of the patient by the physician incorporating caregiver input), and the ADCS-ADL (Alzheimer’s Disease Cooperative Study - Activities of Daily Living, a caregiver-rated assessment of the activities of daily living including personal hygiene, feeding, dressing, household chores such as shopping, retention of ability to orient oneself to surroundings as well as involvement in activities related to finances). The 24-week results for the three assessment tools are summarised in Table 3.

ITT-LOCF population

Transdermal rivastigmine patches 9.5 mg/24 h N = 251

Rivastigmine capsules 12 mg/day N = 256

Placebo N = 282

ADAS-Cog

(n=248)

(n=253)

(n=281)

Mean baseline ± SD

27.0 ± 10.3

27.9 ± 9.4

28.6 ± 9.9

Mean change at week 24 ± SD

-0.6 ± 6.4

-0.6 ± 6.2

1.0 ± 6.8

p-value versus placebo

0.005*1

0.003*1

ADCS-CGIC

(n=248)

(n=253)

(n=278)

Mean score ± SD

3.9 ± 1.20

3.9 ± 1.25

4.2 ± 1.26

p-value versus placebo

0.010*2

0.009*2

ADCS-ADL

(n=247)

(n=254)

(n=281)

Mean baseline ± SD

50.1 ± 16.3

49.3 ± 15.8

49.2 ± 16.0

Mean change at week 24 ± SD

-0.1 ± 9.1

-0.5 ± 9.5

-2.3 ± 9.4

p-value versus placebo

0.013*1

0.039*1

* p<0.05 versus placebo

ITT: Intent-To-Treat; LOCF: Last Observation Carried Forward 1Based on ANCOVA with treatment and country as factors and baseline value as a covariate. Negative ADAS-Cog changes indicate improvement. Positive ADCS-ADL changes indicate improvement.

2Based on CMH test (van Elteren test) blocking for country. ADCS-CGIC scores <4 indicate improvement.

The results for clinically relevant responders from the 24-week study are provided in Table 4.

Clinically relevant improvement was defined a priori as at least 4-point improvement on the ADASCog, no worsening on the ADCS-CGIC, and no worsening on the ADCS-ADL.

Patients with clinically significant response (%)

Transdermal

Rivastigmine

Placebo

rivastigmine patches

capsules

9.5 mg/24 h

12 mg/day

ITT-LOCF population

N = 251

N = 256

N = 282

At least 4 points improvement on ADAS-Cog

with no worsening on ADCS-CGIC and ADCS-

17.4

19.0

10.5

ADL

0.037*

0.004*

p-value versus placebo

*p<0.05 versus placebo

As suggested by compartmental modelling, 9.5 mg/24 h transdermal patches exhibited exposure similar to that provided by an oral dose of 12 mg/day.

5.2 Pharmacokinetic properties

Absorption

Absorption of rivastigmine from transdermal patches is slow. After the first dose, detectable plasma concentrations are observed after a lag time of 0.5-1 hour. Cmax is reached after 10-16 hours. After the peak, plasma concentrations slowly decrease over the remainder of the 24-hour period of application. With multiple dosing (such as at steady state), after the previous transdermal patch is replaced with a new one, plasma concentrations initially decrease slowly for about 40 minutes on average, until absorption from the newly applied transdermal patch becomes faster than elimination, and plasma levels begin to rise again to reach a new peak at approximately 8 hours. At steady state, trough levels are approximately 50% of peak levels, in contrast to oral administration, with which concentrations fall off to virtually zero between doses. Although less pronounced than with the oral formulation, exposure to rivastigmine (Cmax and AUC) increased over-proportionally by a factor of 2.6 when escalating from 4.6 mg/24 h to 9.5 mg/24 h. The fluctuation index (FI), a measure of the relative difference between peak and trough concentrations ((Cmax-Cmin)/Cavg), was 0.58 for transdermal patches containing 4.6 mg/24 h rivastigmine and 0.77 for transdermal patches containing 9.5 mg/24 h rivastigmine, thus demonstrating a much smaller fluctuation between trough and peak concentrations than for the oral formulation (FI = 3.96 (6 mg/day) and 4.15 (12 mg/day)).

The dose of rivastigmine released from the transdermal patch over 24 hours (mg/24 h) cannot be directly equated to the amount (mg) of rivastigmine contained in a capsule with respect to plasma concentration produced over 24 hours.

The single-dose inter-subject variability in rivastigmine pharmacokinetic parameters (normalised to dose/kg bodyweight) was 43% (Cmax) and 49% (AUC0-24h) after transdermal administration versus 74% and 103%, respectively, after the oral form. The inter-patient variability in a steady-state study in Alzheimer’s dementia was at most 45% (Cmax) and 43% (AUC0-24h) after use of the transdermal patch, and 71% and 73%, respectively, after administration of the oral form.

A relationship between active substance exposure at steady state (rivastigmine and metabolite NAP226-90) and bodyweight was observed in Alzheimer’s dementia patients. Compared to a patient with a body weight of 65 kg, the rivastigmine steady-state concentrations in a patient with a body weight of 35 kg would be approximately doubled, while for a patient with a body weight of 100 kg the concentrations would be approximately halved. The effect of bodyweight on active substance exposure suggests special attention to patients with very low body weight during up-titration (see section 4.4).

Exposure (AUC®) to rivastigmine (and metabolite NAP266-90) was highest when the transdermal patch was applied to the upper back, chest, or upper arm and approximately 20-30% lower when applied to the abdomen or thigh.

There was no relevant accumulation of rivastigmine or the metabolite NAP226-90 in plasma in patients with Alzheimer’s disease, except that plasma levels were higher on the second day of transdermal patch therapy than on the first.

Distribution

Rivastigmine is weakly bound to plasma proteins (approximately 40%). It readily crosses the blood-brain barrier and has an apparent volume of distribution in the range of 1.8-2.7 l/kg.

Biotransformation

Rivastigmine is rapidly and extensively metabolised with an apparent elimination half-life in plasma of approximately 3.4 hours after removal of the transdermal patch. Elimination was absorption rate limited (flip-flop kinetics), which explains the longer t/2 after transdermal patch (3.4 h) versus oral or intravenous administrations (1.4 to 1.7 h). Metabolism is primarily via cholinesterase-mediated hydrolysis to the metabolite NAP226-90. In vitro, this metabolite shows minimal inhibition of acetylcholinesterase (<10%). Based on evidence from in vitro and animal studies, the major cytochrome P450 isoenzymes are minimally involved in rivastigmine metabolism. Total plasma clearance of rivastigmine was approximately 130 l/h after a 0.2 mg intravenous dose and decreased to 70 l/h after a 2.7 mg intravenous dose, which is consistent with the non-linear, over-proportional pharmacokinetics of rivastigmine due to saturation of its elimination.

The metabolite-to-parent AUC® ratio was around 0.7 after transdermal patch versus 3.5 after oral administration, indicating that much less metabolism occurred after dermal compared to oral treatment. Less NAP226-90 is formed following application of the transdermal patch, presumably because of the lack of presystemic (hepatic first-pass) metabolism, in contrast to oral administration.

Elimination

Unchanged rivastigmine is found in trace amounts in the urine; renal excretion of the metabolites is the major route of elimination after transdermal patch administration. Following administration of oral 14C-rivastigmine, renal elimination was rapid and essentially complete (>90%) within 24 hours. Less than 1% of the administered dose is excreted in the faeces.

Elderly subjects

Age had no impact on the exposure to rivastigmine in Alzheimer’s disease patients treated with transdermal rivastigmine patches.

Subjects with hepatic impairment

No study was conducted with transdermal rivastigmine patches in subjects with hepatic impairment. After oral administration, the Cmax of rivastigmine was approximately 60% higher and the AUC of rivastigmine was more than twice as high in subjects with mild to moderate hepatic impairment than in healthy subjects.

Subjects with renal impairment

No study was conducted with transdermal rivastigmine patches in subjects with renal impairment. After oral administration, Cmax and AUC of rivastigmine were more than twice as high in Alzheimer patients with moderate renal impairment compared with healthy subjects; however there were no changes in Cmax and AUC of rivastigmine in Alzheimer patients with severe renal impairment.

5.3 Preclinical safety data

Oral and topical repeated-dose toxicity studies in mice, rats, rabbits, dogs and minipigs revealed only effects associated with an exaggerated pharmacological action. No target organ toxicity was observed. Oral and topical dosing in animal studies was limited due to the sensitivity of the animal models used.

Rivastigmine was not mutagenic in a standard battery of in vitro and in vivo tests, except in a chromosomal aberration test in human peripheral lymphocytes at a dose exceeding 104 times the foreseen clinical exposure. The in vivo micronucleus test was negative.

No evidence of carcinogenicity was found in oral and topical studies in mice and in an oral study in rats at the maximum tolerated dose. The exposure to rivastigmine and its metabolites was approximately equivalent to human exposure with highest doses of rivastigmine capsules and transdermal patches.

In animals, rivastigmine crosses the placenta and is excreted into milk. Oral studies in pregnant rats and rabbits gave no indication of teratogenic potential on the part of rivastigmine. Specific dermal studies in pregnant animals have not been conducted.

Rivastigmine transdermal patches were not phototoxic. In some other dermal toxicity studies, a mild irritant effect on the skin of laboratory animals, including controls, was observed. This may indicate a potential for transdermal rivastigmine patches to induce mild erythema in patients. When administered to rabbit eyes in primary eye irritation studies, rivastigmine caused reddening and swelling of the conjunctiva, corneal opacities and miosis which persisted for 7 days. Therefore, the patient/caregiver should avoid contact with the eyes after handling of the patch (see section 4.4)

6 PHARMACEUTICAL PARTICULARS

List of excipients

Film:

Drug matrix:

Adhesive matrix: Printing ink:


6.1


Polyester film

Fluoro-coated polyester film

Acrylic adhesive , Acrylates copolymer poly(butyl methacrylat-co-methyl methacrylat)

Silicone adhesive Black printing ink

6.2 Incompatibilities

To prevent interference with the adhesive properties of the transdermal patch, no cream, lotion or powder should be applied to the skin area where the medicinal product is to be applied.

6.3 Shelf life

2 years

6.4 Special precautions for storage

Store in the original package in order to protect from light.

Keep the transdermal patch in the sachet until use.

This medicinal product does not require any special temperature storage conditions

6.5 Nature and contents of container

Primary packaging material

Erastig 4.6 mg/24 h transdermal patches are individually packed in child-resistant heat-sealed sachets made of a paper/polyethylene terephthalate (PET)/aluminium/polyacrylonitrile (PAN) multi-laminated material.

One sachet contains one transdermal patch.

Secondary packaging material The sachets are packed in a carton.

Available in packs containing 7, 10, 30, 60 and 90 sachets and in multipacks containing 60 (2 x 30) and 90 (3 x 30) sachets.

Not all pack sizes may be marketed.

6.6 Special precautions for disposal

Used transdermal patches should be folded in half, with the adhesive side inwards, placed in the original sachet and discarded safely and out of the reach and sight of children. Any used or unused transdermal patches should be disposed of in accordance with local requirements or returned to the pharmacy.

7    MARKETING AUTHORISATION HOLDER

Teva UK Limited Brampton Road Hampden Park Eastbourne,

BN22 9AG United Kingdom

8    MARKETING AUTHORISATION NUMBER(S)

PL 00289/1814

9 DATE OF FIRST AUTHORISATION/RENEWAL OF THE AUTHORISATION

27/02/2013

10 DATE OF REVISION OF THE TEXT

18/10/2013