Valsartan 80mg Capsules Hard

Informations for option: Valsartan 80mg Capsules Hard, show other option
Document: spc-doc_PL 04416-1272 change



Valsartan 80 mg Capsules, hard


One capsule contains 80 mg valsartan.

For a full list of excipients, see section 6.1


Capsule, hard Appearance:

Light grey cap and flesh opaque body, marked CG FZF in black ink on the cap.


4.1    Therapeutic indications


Treatment of essential hypertension Recent myocardial infarction

Treatment of clinically stable patients with symptomatic heart failure or asymptomatic left ventricular systolic dysfunction after a recent (12 hours - 10 days) myocardial infarction (see sections 4.4 and 5.1).

Heart Failure

Treatment of adult patients with symptomatic heart failure when ACE inhibitors are not tolerated or in beta-blocker intolerant patients as add-on therapy to ACE-inhibitors when mineralocorticoid receptor antagonists cannot be used (see sections 4.2, 4.4, 4.5 and 5.1).

4.2 Posology and method of administration



The recommended dose of Valsartan is 80 mg once daily.    The

antihypertensive effect is substantially present within 2 weeks, and maximal effects are attained within 4 weeks. In some patients whose blood pressure is not adequately controlled, the dose can be increased to 160 mg and to a maximum of 320 mg.

Valsartan may also be administered with other antihypertensive agents (see sections 4.3, 4.4, 4.5 and 5.1). The addition of a diuretic such as hydrochlorothiazide will decrease blood pressure even further in these patients.

Recent myocardial infarction

In clinically stable patients, therapy may be initiated as early as 12 hours after a myocardial infarction. After an initial dose of 20 mg twice daily, valsartan should be titrated to 40 mg, 80 mg, and 160 mg twice daily over the next few weeks. The starting dose is provided by the 40 mg divisible tablet.

The target maximum dose is 160 mg twice daily. In general, it is recommended that patients achieve a dose level of 80 mg twice daily by two weeks after treatment initiation and that the target maximum dose, 160 mg twice daily, be achieved by three months, based on the patient’s tolerability. If symptomatic hypotension or renal dysfunction occur, consideration should be given to a dosage reduction.

Valsartan may be used in patients treated with other post-myocardial infarction therapies, e.g. thrombolytics, acetylsalicylic acid, beta blockers, statins and diuretics. The combination with ACE inhibitors is not recommended (see sections 4.4 and 5.1).

Evaluation of post-myocardial infarction patients should always include assessment of renal function.

Heart failure

The recommended starting dose of Valsartan is 40 mg twice daily. Uptitration to 80 mg and 160 mg twice daily should be done at intervals of at least two weeks to the highest dose, as tolerated by the patient. Consideration should be given to reducing the dose of concomitant diuretics. The maximum daily dose administered in clinical trials is 320 mg in divided doses.

Valsartan may be administered with other heart failure therapies. However, the triple combination of an ACE inhibitor, valsartan and a beta blocker or a potassium-sparing diuretic is not recommended (see sections 4.4 and 5.1). Evaluation of patients with heart failure should always include assessment of renal function.

Method of administration

Valsartan may be taken independently of a meal and should be administered with water.

Additional information on special _populations Elderly

No dose adjustment is required in elderly patients.

Renal impairment

No dosage adjustment is required for patients with a creatinine clearance >10 ml/min (see sections 4.4 and 5.2).

Hepatic impairment

In patients with mild to moderate hepatic impairment without cholestasis, the dose of valsartan should not exceed 80mg. Valsartan is contraindicated in patients with severe hepatic impairment and in patients with cholestasis (see sections 4.3, 4.4 and 5.2).

Paediatric patients

Valsartan is not recommended for use in children below the age of 18 years due to a lack of data on safety and efficacy.

4.3 Contraindications

-    Hypersensitivity to the active substance or to any of the excipients.

-    Severe hepatic impairment, biliary cirrhosis and cholestasis.

-    Second and third trimester of pregnancy (see sections 4.4 and 4.6).

-    The concomitant use of Valsartan with aliskiren-containing products is contraindicated in patients with diabetes mellitus or renal impairment (GFR < 60 ml/min/1.73 m2) (see sections 4.5 and 5.1).

4.4 Special warnings and precautions for use


Concomitant use with potassium supplements, potassium-sparing diuretics, salt substitutes containing potassium, or other agents that may increase

potassium levels (heparin, etc.) is not recommended. Monitoring of potassium should be undertaken as appropriate.

Sodium and/or volume depleted patients

In severely sodium-depleted and/or volume-depleted patients, such as those receiving high doses of diuretics, symptomatic hypotension may occur in rare cases after initiation of therapy with Valsartan. Sodium and/or volume depletion should be corrected before starting treatment with Valsartan, for example by reducing the diuretic dose.

Renal artery stenosis

In patients with bilateral renal artery stenosis or stenosis to a solitary kidney, the safe use of Valsartan has not been established.

Short-term administration of Valsartan to twelve patients with renovascular hypertension secondary to unilateral renal artery stenosis did not induce any significant changes in renal haemodynamics, serum creatinine, or blood urea nitrogen (BUN). However, other agents that affect the renin-angiotensin system may increase blood urea and serum creatinine in patients with unilateral renal artery stenosis, therefore monitoring of renal function is recommended when patients are treated with valsartan.

Kidney transplantation

There is currently no experience on the safe use of Valsartan in patients who have recently undergone kidney transplantation.

Primary hyperaldosteronism

Patients with primary hyperaldosteronism should not be treated with Valsartan as their renin-angiotensin system is not activated.

Aortic and mitral valve stenosis, obstructive hypertrophic cardiomyopathy As with all other vasodilators, special caution is indicated in patients suffering from aortic or mitral stenosis, or hypertrophic obstructive cardiomyopathy (HOCM).

Impaired renal function

No dosage adjustment is required for patients with a creatinine clearance >10 ml/min. There is currently no experience on the safe use in patients with a creatinine clearance <10 ml/min and patients undergoing dialysis, therefore valsartan should be used with caution in these patients (see sections 4.2 and 5.2).

Hepatic impairment

In patients with mild to moderate hepatic impairment without cholestasis, Valsartan should be used with caution (see sections 4.2 and 5.2).


Angiotensin II Receptor Antagonists (AIIRAs) should not be initiated during pregnancy. Unless continued AIIRAs therapy is considered essential, patients planning pregnancy should be changed to alternative anti-hypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with AIIRAs should be stopped immediately, and, if appropriate, alternative therapy should be started (see sections 4.3 and 4.6).

Dual blockade of the renin-angiotensin-aldosterone system (RAAS)

There is evidence that the concomitant use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren increases the risk of hypotension, hyperkalaemia and decreased renal function (including acute renal failure). Dual blockade of RAAS through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is therefore not recommended (see sections 4.5 and 5.1).

If dual blockade therapy is considered absolutely necessary, this should only occur under specialist supervision and subject to frequent close monitoring of renal function, electrolytes and blood pressure.

ACE-inhibitors and angiotensin II receptor blockers should not be used concomitantly in patients with diabetic nephropathy.

Recent-myocardial infarction

The combination of captopril and valsartan has shown no additional clinical benefit, instead the risk for adverse events increased compared to treatment with the respective therapies (see sections 4.2 and 5.1). Therefore, the combination of valsartan with an ACE inhibitor is not recommended.

Caution should be observed when initiating therapy in post-myocardial infarction patients. Evaluation of post-myocardial infarction patients should always include assessment of renal function (see section 4.2).

Use of Valsartan in post-myocardial infarction patients commonly results in some reduction in blood pressure, but discontinuation of therapy because of continuing symptomatic hypotension is not usually necessary provided dosing instructions are followed (see section 4.2).

Heart Failure

The risk of adverse reactions, especially hypotension, hyperkalaemia and decreased renal function (including acute renal failure), may increase when Valsartan is used in combination with an ACE-inhibitor. In patients with heart failure, the triple combination of an ACE-inhibitor, a beta blocker and Valsartan has not shown any clinical benefit (see section 5.1). This combination apparently increases the risk for adverse events and is therefore not recommended. Triple combination of an ACE-inhibitor, a mineralocorticoid receptor antagonist and valsartan is also not recommended. Use of these combinations should be under specialist supervision and subject to frequent close monitoring of renal function, electrolytes and blood pressure. Caution should be observed when initiating therapy in patients with heart failure. Evaluation of patients with heart failure should always include assessment of renal function (see section 4.2).

Use of Valsartan in patients with heart failure commonly results in some reduction in blood pressure, but discontinuation of therapy because of continuing symptomatic hypotension is not usually necessary provided dosing instructions are followed (see section 4.2).

In patients whose renal function may depend on the activity of the renin-angiotensin-aldosterone-system (e.g. patients with severe congestive heart failure), treatment with ACE-inhibitors has been associated with oliguria and/or progressive azotaemia and in rare cases with acute renal failure and/or death. As valsartan is an angiotensin II receptor blocker, it cannot be excluded that the use of Valsartan may be associated with impairment of the renal function.

ACE-inhibitors and angiotensin II receptor blockers should not be used concomitantly in patients with diabetic nephropathy.

4.5 Interaction with other medicinal products and other forms of interaction

Concomitant use not recommended

Clinical trial data has shown that dual blockade of the renin-angiotensin-aldosterone-system (RAAS) through the combined use of ACE-inhibitors, angiotensin II receptor blockers or aliskiren is associated with a higher frequency of adverse events such as hypotension, hyperkalaemia and decreased renal function (including acute renal failure) compared to the use of a single RAAS-acting agent (see sections 4.3, 4.4 and 5.1).


Reversible increases in serum lithium concentrations and toxicity have been reported during concurrent use of ACE inhibitors. Due to the lack of experience with concomitant use of valsartan and lithium, this combination is not recommended. If the combination proves necessary, careful monitoring of serum lithium levels is recommended.

Potassium-sparing diuretics, potassium supplements, salt substitutes containing potassium and other substances that may increase potassium levels

If a medicinal product that affects potassium levels is considered necessary in combination with valsartan, monitoring of potassium plasma levels is advised.

Caution required with concomitant use

Non-steroidal anti-inflammatory medicines (NSAIDs), including selective COX-2 inhibitors, acetylsalicylic acid >3 g/day), and non-selective NSAIDs

When angiotensin II antagonists are administered simultaneously with NSAIDs, attenuation of the antihypertensive effect may occur. Furthermore, concomitant use of angiotensin II antagonists and NSAIDs may lead to an increased risk of worsening of renal function and an increase in serum potassium. Therefore, monitoring of renal function at the beginning of the treatment is recommended, as well as adequate hydration of the patient.


In drug interaction studies with valsartan, no interactions of clinical significance have been found with valsartan or any of the following substances: cimetidine, warfarin, furosemide, digoxin, atenolol, indometacin, hydrochlorothiazide, amlodipine, glibenclamide.

4.6 Pregnancy and lactation


The use of Angiotensin II Receptor Antagonists (AIIRAs) is not recommended during the first trimester of pregnancy (see section 4.4). The use of AIIRAs is contra-indicated during the second and third trimester of pregnancy (see sections 4.3 and 4.4).

Epidemiological evidence regarding the risk of teratogenicity following exposure to ACE inhibitors during the first trimester of pregnancy has not been conclusive; however, a small increase in risk cannot be excluded. Whilst there is no controlled epidemiological data on the risk with AIIRAs, similar risks may exist for this class of drugs. Unless continued AIIRA therapy is considered essential, patients planning pregnancy should be changed to alternative anti-hypertensive treatments which have an established safety profile for use in pregnancy. When pregnancy is diagnosed, treatment with AIIRAs should be stopped immediately, and, if appropriate, alternative therapy should be started.

AIIRAs therapy exposure during the second and third trimesters is known to induce human fetotoxicity (decreased renal function, oligohydramnios, skull ossification retardation) and neonatal toxicity (renal failure, hypotension, hyperkalemia); see also section 5.3 “Preclinical safety data”.

Should exposure to AIIRAs have occurred from the second trimester of pregnancy, ultrasound check of renal function and skull is recommended.

Infants whose mothers have taken AIIRAs should be closely observed for hypotension (see also sections 4.3 and 4.4).


Because no information is available regarding the use of valsartan during breastfeeding, Valsartan is not recommended and alternative treatments with better established safety profiles during breast-feeding are preferable, especially while nursing a newborn or preterm infant.

4.7 Effects on ability to drive and use machines

No studies on the effects on the ability to drive have been performed. When driving vehicles or operating machines it should be taken into account that occasionally dizziness or weariness may occur.

4.8 Undesirable effects

In controlled clinical studies in patients with hypertension, the overall incidence of adverse reactions (ADRs) was comparable with placebo and is consistent with the pharmacology of valsartan.. The incidence of ADRs did not appear to be related to dose or treatment duration and also showed no association with gender, age or race.

The ADRs reported from clinical studies, post-marketing experience and laboratory findings are listed below according to system organ class.

Adverse reactions are ranked by frequency, the most frequent first, using the following convention: very common (>1/10); common (>1/100 to <1/10); uncommon (>1/1000 to <1/100); rare (>1/10, 000 to <1/1000); very rare (<1/10, 000), including isolated reports. Within each frequency grouping, adverse reactions are ranked in order of decreasing seriousness.

For all the ADRs reported from post-marketing experience and laboratory findings, it is not possible to apply any ADR frequency and therefore they are mentioned with a "not known" frequency.

• Hypertension

Blood and lymphatic system disorders

Not known    Decrease in haemoglobin, Decrease

in haematocrit, Neutropenia, Thrombocytopenia

Immune system disorders

Not known    Hypersensitivity    including    serum


Metabolism and nutrition disorders

Not known    Increase of serum potassium

Ear and labyrinth system disorders Uncommon    Vertigo

Vascular disorders

Not known    Vasculitis

Respiratory, thoracic and mediastinal disorders



Gastrointestinal disorders


Abdominal pain

Hepato-biliary Disorders

Not known

Elevation of liver function values including increase of serum bilirubin.

Skin and subcutaneous tissue disorders

Not known

Angioedema, Rash, Pruritus

Musculoskeletal and connective tissue disorders

Not known


Renal and urinary disorders

Not known

Renal failure and impairment, Elevation of serum creatinine

General disorders and administration site conditions



The safety profile seen in controlled-clinical studies in patients with post-myocardial infarction and/or heart failure varies from the overall safety profile seen in hypertensive patients. This may relate to the patients underlying disease. ADRs that occurred in post-myocardial infarction and/or heart failure patients are listed below:

• Post-myocardial infarction and/or heart failure

Blood and lymphatic system disorders

Not known


Immune system disorders

Not known

Hypersensitivity including serum sickness

Metabolism and nutrition disorders



Not known

Increase of serum potassium

Nervous system disorders


Dizziness, Postural dizziness


Syncope, Headache

Ear and labyrinth system disorders



Cardiac disorders


Cardiac failure

Vascular disorders


Hypotension, Orthostatic hypotension

Not known


Respiratory, thoracic and mediastinal disorders

4.9 Overdose


Overdose with Valsartan may result in marked hypotension, which could lead to depressed levels of consciousness, circulatory collapse and/or shock.


The therapeutic measures depend on the time of ingestion and the type and severity of the symptoms; stabilisation of the circulatory condition is of prime importance.

If hypotension occurs, the patient should be placed in a supine position and blood volume correction should be undertaken.

Valsartan is unlikely to be removed by haemodialysis.





Gastrointestinal disorders


Nausea, Diarrhoea

Hepatobiliary Disorders

Not known

Elevation of liver function values

Skin and subcutaneous tissue disorders



Not known

Rash, Pruritus

Musculoskeletal and connective tissue disorders

Not known


Renal and urinary disorders


Renal failure and impairment


Acute renal failure, Elevation of serum creatinine

Not known

Increase in Blood Urea Nitrogen

General disorders and administration site conditions


Asthenia, Fatigue

Pharmacodynamic properties

Pharmacotherapeutic groups: Angiotensin II Antagonists, plain ATC code: C09CA03.

Valsartan is an orally active, potent, and specific angiotensin II (Ang II) receptor antagonist. It acts selectively on the AT1 receptor subtype, which is responsible for the known actions of angiotensin II. The increased plasma levels of Ang II following AT1 receptor blockade with valsartan may stimulate the unblocked AT2 receptor, which appears to counterbalance the effect of the AT1 receptor. Valsartan does not exhibit any partial agonist activity at the AT1 receptor and has much (about 20,000 fold) greater affinity for the ATreceptor than for the AT2 receptor. Valsartan is not known to bind to or block other hormone receptors or ion channels known to be important in cardiovascular regulation.

Valsartan does not inhibit ACE (also known as kininase II), which converts Ang I to Ang II and degrades bradykinin. Since there is no effect on ACE and no potentiation of bradykinin or substance P, angiotensin II antagonists are unlikely to be associated with coughing. In clinical trials where valsartan was compared with an ACE inhibitor, the incidence of dry cough was significantly (P < 0.05) less in patients treated with valsartan than in those treated with an ACE inhibitor (2.6 % versus 7.9 % respectively). In a clinical trial of patients with a history of dry cough during ACE inhibitor therapy, 19.5 % of trial subjects receiving valsartan and 19.0 % of those receiving a thiazide diuretic experienced cough compared to 68.5 % of those treated with an ACE inhibitor (P < 0.05).

Two large randomised, controlled trials (ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial) and VA NEPHRON-D (The Veterans Affairs Nephropathy in Diabetes)) have examined the use of the combination of an ACE-inhibitor with an angiotensin II receptor blocker.

ONTARGET was a study conducted in patients with a history of cardiovascular or cerebrovascular disease, or type 2 diabetes mellitus accompanied by evidence of end-organ damage. VA NEPHRON-D was a study in patients with type 2 diabetes mellitus and diabetic nephropathy.

These studies have shown no significant beneficial effect on renal and/or cardiovascular outcomes and mortality, while an increased risk of hyperkalaemia, acute kidney injury and/or hypotension as compared to monotherapy was observed. Given their similar pharmacodynamic properties, these results are also relevant for other ACE-inhibitors and angiotensin II receptor blockers.

ACE-inhibitors and angiotensin II receptor blockers should therefore not be used concomitantly in patients with diabetic nephropathy.

ALTITUDE (Aliskiren Trial in Type 2 Diabetes Using Cardiovascular and Renal Disease Endpoints) was a study designed to test the benefit of adding aliskiren to a standard therapy of an ACE-inhibitor or an angiotensin II receptor blocker in patients with type 2 diabetes mellitus and chronic kidney disease, cardiovascular disease, or both. The study was terminated early because of an increased risk of adverse outcomes. Cardiovascular death and stroke were both numerically more frequent in the aliskiren group than in the placebo group and adverse events and serious adverse events of interest (hyperkalaemia, hypotension and renal dysfunction) were more frequently reported in the aliskiren group than in the placebo group.


Administration of Valsartan to patients with hypertension results in reduction of blood pressure without affecting pulse rate.

In most patients, after administration of a single oral dose, onset of antihypertensive activity occurs within 2 hours, and the peak reduction of blood pressure is achieved within 4-6 hours. The antihypertensive effect persists over 24 hours after dosing. During repeated dosing, the antihypertensive effect is substantially present within 2 weeks, and maximal effects are attained within 4 weeks and persist during long-term therapy. Combined with hydrochlorothiazide, a significant additional reduction in blood pressure is achieved.

Abrupt withdrawal of Valsartan has not been associated with rebound hypertension or other adverse clinical events.

In hypertensive patients with type 2 diabetes and microalbuminuria, valsartan has been shown to reduce the urinary excretion of albumin. The MARVAL (Micro Albuminuria Reduction with Valsartan) study assessed the reduction in urinary albumin excretion (UAE) with valsartan (80-160 mg/od) versus amlodipine (5-10 mg/od), in 332 type 2 diabetic patients (mean age: 58 years; 265 men) with microalbuminuria (valsartan: 58 pg/min; amlodipine: 55.4 pg/min), normal or high blood pressure and with preserved renal function (blood creatinine <120 pmol/l). At 24 weeks, UAE was reduced (p<0.001) by 42% (-24.2 pg/min; 95% CI: -40.4 to -19.1) with valsartan and approximately 3% (-1.7 pg/min; 95% CI: -5.6 to 14.9) with amlodipine despite similar rates of blood pressure reduction in both groups.

The Valsartan Reduction of Proteinuria (DROP) study further examined the efficacy of valsartan in reducing UAE in 391 hypertensive patients (BP=150/88 mmHg) with type 2 diabetes, albuminuria (mean=102 pg/min; 20-700 pg/min) and preserved renal function (mean serum creatinine = 80 pmol/l). Patients were randomized to one of 3 doses of valsartan (160, 320 and 640 mg/od) and treated for 30 weeks. The purpose of the study was to determine the optimal dose of valsartan for reducing UAE in hypertensive patients with type 2 diabetes. At 30 weeks, the percentage change in UAE was significantly reduced by 36% from baseline with valsartan 160 mg (95%CI: 22 to 47%), and by 44% with valsartan 320 mg (95%CI: 31 to 54%). It was concluded that 160-320 mg of valsartan produced clinically relevant reductions in UAE in hypertensive patients with type 2 diabetes.

Recent myocardial infarction

The VALsartan In Acute myocardial iNfarcTion trial (VALIANT) was a randomised, controlled, multinational, double-blind study in 14,703 patients with acute myocardial infarction and signs, symptoms or radiological evidence of congestive heart failure and/or evidence of left ventricular systolic dysfunction (manifested as an ejection fraction < 40% by radionuclide ventriculography or < 35% by echocardiography or ventricular contrast angiography). Patients were randomized within 12 hours to 10 days after the onset of myocardial infarction symptoms to valsartan, captopril, or the combination of both. The mean treatment duration was two years. The primary endpoint was time to all-cause mortality.

Valsartan was as effective as captopril in reducing all-cause mortality after myocardial infarction. All-cause mortality was similar in the valsartan (19.9 %), captopril (19.5 %), and valsartan+captopril (19.3 %) groups. Combining valsartan with captopril did not add further benefit over captopril alone. There was no difference between valsartan and captopril in all-cause mortality based on age, gender, race, baseline therapies or underlying disease. Valsartan was also effective in prolonging the time to and reducing cardiovascular mortality, hospitalisation for heart failure, and recurrent myocardial infarction, resuscitated cardiac arrest, and non-fatal stroke (secondary composite endpoint.)

The safety profile of valsartan was consistent with the clinical course of patients treated in the post-myocardial infarction setting. Regarding renal function, doubling of serum creatinine was observed in 4.2% of valsartan-treated patients, 4.8% of valsartan+captopril-treated patients, and 3.4% of captopril-treated patients. Discontinuations due to various types of renal dysfunction occurred in 1.1% of valsartan-treated patients, 1.3% in valsartan+captopril patients, and 0.8% of captopril patients. An assessment of renal function should be included in the evaluation of patients post-myocardial infarction.

There was no difference in all-cause mortality or cardiovascular mortality or morbidity when beta-blockers were administered together with the combination of valsartan + captopril, valsartan alone, or captopril alone. Irrespective of treatment, mortality was lower in the group of patients treated with a beta blocker, suggesting that the known beta blocker benefit in this population was maintained in this trial.

Heart failure

Val-HeFT was a randomised, controlled, multinational clinical trial of valsartan compared with placebo on morbidity and mortality in 5,010 NYHA class II (62%), III (36%) and IV (2%) heart failure patients receiving usual therapy with LVEF <40% and left ventricular internal diastolic diameter (LVIDD) >2.9 cm/m2. Baseline therapy included ACE inhibitors (93%), diuretics (86%), digoxin (67%) and beta blockers (36%). The mean duration of follow-up was nearly two years. The mean daily dose of Valsartan in Val-HeFT was 254 mg. The study had two primary endpoints: all cause mortality (time to death) and composite mortality and heart failure morbidity (time to first morbid event) defined as death, sudden death with resuscitation, hospitalisation for heart failure, or administration of intravenous inotropic or vasodilator agents for four hours or more without hospitalisation.

All cause mortality was similar (p=NS) in the valsartan (19.7%) and placebo (19.4%) groups. The primary benefit was a 27.5% (95% CI: 17 to 37%) reduction in risk for time to first heart failure hospitalisation (13.9% vs. 18.5%). Results appearing to favour placebo (composite mortality and morbidity was 21.9% in placebo vs. 25.4% in valsartan group) were observed for those patients receiving the triple combination of an ACE inhibitor, a beta blocker and valsartan.

In a subgroup of patients not receiving an ACE inhibitor (n=366), the morbidity benefits were greatest. In this subgroup all-cause mortality was significantly reduced with valsartan compared to placebo by 33% (95% CI: -6% to 58%) (17.3% valsartan vs. 27.1% placebo) and the composite mortality and morbidity risk was significantly reduced by 44% (24.9% valsartan vs. 42.5% placebo).

In patients receiving an ACE inhibitor without a beta-blocker, all cause mortality was similar (p=NS) in the valsartan (21.8%) and placebo (22.5%) groups. Composite mortality and morbidity risk was significantly reduced by 18.3% (95% CI: 8% to 28%) with valsartan compared with placebo (31.0% vs. 36.3%).

In the overall Val-HeFT population, valsartan treated patients showed significant improvement in NYHA class, and heart failure signs and symptoms, including dyspnoea, fatigue, oedema and rales compared to placebo. Patients treated with valsartan had a better quality of life as demonstrated by change in the Minnesota Living with Heart Failure Quality of Life score from baseline at endpoint than placebo. Ejection fraction in valsartan treated patients was significantly increased and LVIDD significantly reduced from baseline at endpoint compared to placebo.

5.2 Pharmacokinetic properties


Following oral administration of valsartan alone, peak plasma concentrations of valsartan are reached in 2-4 hours. Mean absolute bioavailability is 23%. Food decreases exposure (as measured by AUC) to valsartan by about 40% and peak plasma concentration (Cmax) by about 50%, although from about 8 h post dosing plasma valsartan concentrations are similar for the fed and fasted groups. This reduction in AUC is not, however, accompanied by a clinically significant reduction in the therapeutic effect, and valsartan can therefore be given either with or without food.


The steady-state volume of distribution of valsartan after intravenous administration is about 17 litres, indicating that valsartan does not distribute into tissues extensively. Valsartan is highly bound to serum proteins (9497%), mainly serum albumin.


Valsartan is not biotransformed to a high extent as only about 20% of dose is recovered as metabolites. A hydroxy metabolite has been identified in plasma at low concentrations (less than 10% of the valsartan AUC). This metabolite is pharmacologically inactive.


Valsartan shows multiexponential decay kinetics (b/2a <1 h and t/2e about 9 h). Valsartan is primarily eliminated by biliary excretion in faeces (about 83% of dose) and renally in urine (about 13% of dose), mainly as unchanged drug. Following intravenous administration, plasma clearance of valsartan is about 2 l/h and its renal clearance is 0.62 l/h (about 30% of total clearance). The halflife of valsartan is 6 hours.

In Heart failure patients:

The average time to peak concentration and elimination half-life of valsartan in heart failure patients are similar to that observed in healthy volunteers. AUC and Cmax values of valsartan are almost proportional with increasing dose over the clinical dosing range (40 to 160 mg twice a day). The average accumulation factor is about 1.7. The apparent clearance of valsartan following oral administration is approximately 4.5 l/h. Age does not affect the apparent clearance in heart failure patients.

Special _ populations


A somewhat higher systemic exposure to valsartan was observed in some elderly subjects than in young subjects; however, this has not been shown to have any clinical significance..

Impaired renal function

As expected for a compound where renal clearance accounts for only 30% of total plasma clearance, no correlation was seen between renal function and systemic exposure to valsartan. Dose adjustment is therefore not required in patients with renal impairment (creatinine clearance >10 ml/min). There is currently no experience on the safe use in patients with a creatinine clearance <10 ml/min and patients undergoing dialysis, therefore valsartan should be used with caution in these patients (see sections 4.2 and 4.4). Valsartan is highly bound to plasma protein and is unlikely to be removed by dialysis.

Hepatic impairment

Approximately 70% of the dose absorbed is eliminated in the bile, essentially in the unchanged form. Valsartan does not undergo any noteworthy biotransformation. A doubling of exposure (AUC) was observed in patients with mild to moderate hepatic impairment compared to healthy subjects. However, no correlation was observed between plasma valsartan concentration versus degree of hepatic dysfunction. Valsartan has not been studied in patients with severe hepatic dysfunction (see sections 4.2, 4.3 and 4.4).

Preclinical safety data


Non-clinical data reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential.

In rats, maternally toxic doses (600 mg/kg/day) during the last days of gestation and lactation led to lower survival, lower weight gain and delayed development (pinna detachment and ear-canal opening) in the offspring (see section 4.6). These doses in rats (600 mg/kg/day) are approximately 18 times the maximum recommended human dose on a mg/m2 basis (calculations assume an oral dose of 320 mg/day and a 60-kg patient).

In non-clinical safety studies, high doses of valsartan (200 to 600 mg/kg body weight) caused in rats a reduction of red blood cell parameters (erythrocytes, haemoglobin, haematocrit) and evidence of changes in renal haemodynamics (slightly raised plasma urea, and renal tubular hyperplasia and basophilia in males). These doses in rats (200 and 600 mg/kg/day) are approximately 6 and 18 times the maximum recommended human dose on a mg/m2 basis (calculations assume an oral dose of 320 mg/day and a 60-kg patient).

In marmosets at similar doses, the changes were similar though more severe, particularly in the kidney where the changes developed to a nephropathy which included raised urea and creatinine.

Hypertrophy of the renal juxtaglomerular cells was also seen in both species. All changes were considered to be caused by the pharmacological action of valsartan which produces prolonged hypotension, particularly in marmosets. For therapeutic doses of valsartan in humans, the hypertrophy of the renal juxtaglomerular cells does not seem to have any relevance.


6.1    List of excipients

Microcrystalline cellulose, polyvidone, sodium lauryl sulfate, crospovidone, magnesium stearate, gelatine, propylene glycol, colourings (E171, E172) and shellac.

6.2    Incompatibilities

None known.

6.3    Shelf life

3 years.

6.4    Special precautions for storage

Protect from moisture and heat. Store below 30°C.

6.5    Nature and contents of container

No PVC/PE/PVDC blister packs.

80 mg capsules are supplied in packs of 7, 28 or 98 capsules.

6.6    Special precautions for disposal

No specific instructions for use/handling.





PL 04416/1272